Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

SmolVLM-Base-vqav2

This model is a fine-tuned version of HuggingFaceTB/SmolVLM-Base on an unknown dataset.

Model description

Here is the sample code for how to use.

from transformers import AutoProcessor, AutoModelForImageTextToText
from peft import PeftModel
import torch
from PIL import Image


DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" ### DEVICE = "cuda:0" instead of  DEVICE = "cuda"  it fixes flash attention warning!!


model_id = "HuggingFaceTB/SmolVLM-Instruct"  # Base Model

base_model = AutoModelForImageTextToText.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    _attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager"
).to(DEVICE)

print(f"Model is on device: {base_model.device}")


# QLoRA adapter
adapter_path = r"C:\Users\.....\SmolVLM-Base-vqav2\checkpoint-670"
model = PeftModel.from_pretrained(base_model, adapter_path)

model = model.to(DEVICE)  # Check the model device #####################################

# Load the processor
processor = AutoProcessor.from_pretrained(model_id)

# Functıon for load images from local
def load_image_from_file(file_path):
    try:
        image = Image.open(file_path)
        return image
    except Exception as e:
        print(f"Error loading image: {e}")
        return None


image1_path = "C:/Users/.../IMG_4.jpg"
image2_path = "C:/Users/.../IMG_35.jpg"

# Load images
image1 = load_image_from_file(image1_path)
image2 = load_image_from_file(image2_path)

# Check the images
if image1 and image2:

    # Create message type
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "image"},
                {"type": "text", "text": "Can you describe and compare the two images?"}
            ]
        },
    ]
    
    # Prepare the Prompt

    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[image1, image2], return_tensors="pt")
    inputs = inputs.to(DEVICE)
    
    # Run the model
    generated_ids = model.generate(**inputs, max_new_tokens=500)
    generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)

    # Print the result
    print(generated_texts[0])  # Çıktı

else:
    print("Images can not be loaded")

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 1

Training results

Framework versions

  • PEFT 0.14.0
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kdqemre/SmolVLM-Base-vqav2