LiLT-SER-ZH / README.md
kavg's picture
End of training
1980eeb verified
metadata
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LiLT-SER-ZH
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xfun
          type: xfun
          config: xfun.zh
          split: validation
          args: xfun.zh
        metrics:
          - name: Precision
            type: precision
            value: 0.8408488063660478
          - name: Recall
            type: recall
            value: 0.9347968545216252
          - name: F1
            type: f1
            value: 0.8853374709076804
          - name: Accuracy
            type: accuracy
            value: 0.8116519985331867

LiLT-SER-ZH

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8792
  • Precision: 0.8408
  • Recall: 0.9348
  • F1: 0.8853
  • Accuracy: 0.8117

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.2166 10.64 500 0.7724 0.8544 1.1239 0.7932 0.9260
0.0238 21.28 1000 0.8201 0.8624 1.0535 0.8572 0.8676
0.0034 31.91 1500 0.8057 0.8599 1.4675 0.8088 0.9178
0.0163 42.55 2000 0.8232 0.8729 1.2837 0.8572 0.8893
0.0037 53.19 2500 0.8114 0.8627 1.5315 0.8142 0.9174
0.0003 63.83 3000 0.8137 0.8652 1.4604 0.8471 0.8840
0.0005 74.47 3500 0.8115 0.8767 1.5980 0.8409 0.9158
0.0005 85.11 4000 0.8129 0.8634 1.5108 0.8261 0.9043
0.0004 95.74 4500 0.8161 0.8817 1.7719 0.8397 0.9282
0.0001 106.38 5000 0.8203 0.8813 1.4313 0.8600 0.9037
0.0001 117.02 5500 0.8181 0.8832 1.5232 0.8509 0.9181
0.0 127.66 6000 0.8069 0.8808 1.6845 0.8532 0.9102
0.0179 138.3 6500 0.8192 0.8793 1.6293 0.8398 0.9227
0.0 148.94 7000 0.8081 0.8815 1.8209 0.8381 0.9296
0.0 159.57 7500 1.8224 0.8443 0.9184 0.8798 0.8070
0.0 170.21 8000 1.7810 0.8450 0.9305 0.8857 0.8127
0.0 180.85 8500 1.7531 0.8454 0.9230 0.8825 0.8088
0.0 191.49 9000 1.8757 0.8394 0.9302 0.8825 0.8070
0.0 202.13 9500 1.8757 0.8417 0.9338 0.8854 0.8123
0.0 212.77 10000 1.8792 0.8408 0.9348 0.8853 0.8117

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1