LiLT-SER-EN-SIN / README.md
kavg's picture
End of training
637aa8d verified
metadata
license: mit
base_model: kavg/LiLT-SER-EN
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LiLT-SER-EN-SIN
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xfun
          type: xfun
          config: xfun.sin
          split: validation
          args: xfun.sin
        metrics:
          - name: Precision
            type: precision
            value: 0.7420494699646644
          - name: Recall
            type: recall
            value: 0.7758620689655172
          - name: F1
            type: f1
            value: 0.7585791691751957
          - name: Accuracy
            type: accuracy
            value: 0.8473839248141394

LiLT-SER-EN-SIN

This model is a fine-tuned version of kavg/LiLT-SER-EN on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3790
  • Precision: 0.7420
  • Recall: 0.7759
  • F1: 0.7586
  • Accuracy: 0.8474

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0089 21.74 500 0.8362 0.6606 0.7118 0.6852 0.8545
0.0013 43.48 1000 1.3605 0.7269 0.7081 0.7174 0.8230
0.0051 65.22 1500 0.9220 0.7113 0.7525 0.7313 0.8725
0.0054 86.96 2000 1.2086 0.6965 0.7291 0.7124 0.8467
0.0001 108.7 2500 1.1308 0.6843 0.7315 0.7071 0.8449
0.0001 130.43 3000 1.0934 0.7362 0.7044 0.7199 0.8606
0.0 152.17 3500 1.0390 0.7297 0.7512 0.7403 0.8590
0.0001 173.91 4000 1.1448 0.7128 0.7672 0.7390 0.8599
0.0 195.65 4500 1.1902 0.7393 0.7229 0.7310 0.8551
0.0001 217.39 5000 1.1164 0.7141 0.7783 0.7448 0.8555
0.0001 239.13 5500 1.4359 0.7197 0.7241 0.7219 0.8313
0.0 260.87 6000 1.4027 0.7256 0.7426 0.7340 0.8376
0.0 282.61 6500 1.4112 0.7085 0.7574 0.7321 0.8524
0.0 304.35 7000 1.5045 0.7627 0.7599 0.7613 0.8432
0.0 326.09 7500 1.4482 0.7390 0.7672 0.7529 0.8398
0.0 347.83 8000 1.5717 0.7155 0.7525 0.7335 0.8360
0.0 369.57 8500 1.3845 0.7348 0.7746 0.7542 0.8422
0.0 391.3 9000 1.3238 0.7283 0.7660 0.7467 0.8499
0.0 413.04 9500 1.3677 0.7321 0.7672 0.7492 0.8492
0.0001 434.78 10000 1.3790 0.7420 0.7759 0.7586 0.8474

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1