metadata
license: mit
base_model: kavg/LiLT-SER-EN
tags:
- generated_from_trainer
datasets:
- xfun
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: LiLT-SER-EN-SIN
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xfun
type: xfun
config: xfun.sin
split: validation
args: xfun.sin
metrics:
- name: Precision
type: precision
value: 0.7420494699646644
- name: Recall
type: recall
value: 0.7758620689655172
- name: F1
type: f1
value: 0.7585791691751957
- name: Accuracy
type: accuracy
value: 0.8473839248141394
LiLT-SER-EN-SIN
This model is a fine-tuned version of kavg/LiLT-SER-EN on the xfun dataset. It achieves the following results on the evaluation set:
- Loss: 1.3790
- Precision: 0.7420
- Recall: 0.7759
- F1: 0.7586
- Accuracy: 0.8474
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0089 | 21.74 | 500 | 0.8362 | 0.6606 | 0.7118 | 0.6852 | 0.8545 |
0.0013 | 43.48 | 1000 | 1.3605 | 0.7269 | 0.7081 | 0.7174 | 0.8230 |
0.0051 | 65.22 | 1500 | 0.9220 | 0.7113 | 0.7525 | 0.7313 | 0.8725 |
0.0054 | 86.96 | 2000 | 1.2086 | 0.6965 | 0.7291 | 0.7124 | 0.8467 |
0.0001 | 108.7 | 2500 | 1.1308 | 0.6843 | 0.7315 | 0.7071 | 0.8449 |
0.0001 | 130.43 | 3000 | 1.0934 | 0.7362 | 0.7044 | 0.7199 | 0.8606 |
0.0 | 152.17 | 3500 | 1.0390 | 0.7297 | 0.7512 | 0.7403 | 0.8590 |
0.0001 | 173.91 | 4000 | 1.1448 | 0.7128 | 0.7672 | 0.7390 | 0.8599 |
0.0 | 195.65 | 4500 | 1.1902 | 0.7393 | 0.7229 | 0.7310 | 0.8551 |
0.0001 | 217.39 | 5000 | 1.1164 | 0.7141 | 0.7783 | 0.7448 | 0.8555 |
0.0001 | 239.13 | 5500 | 1.4359 | 0.7197 | 0.7241 | 0.7219 | 0.8313 |
0.0 | 260.87 | 6000 | 1.4027 | 0.7256 | 0.7426 | 0.7340 | 0.8376 |
0.0 | 282.61 | 6500 | 1.4112 | 0.7085 | 0.7574 | 0.7321 | 0.8524 |
0.0 | 304.35 | 7000 | 1.5045 | 0.7627 | 0.7599 | 0.7613 | 0.8432 |
0.0 | 326.09 | 7500 | 1.4482 | 0.7390 | 0.7672 | 0.7529 | 0.8398 |
0.0 | 347.83 | 8000 | 1.5717 | 0.7155 | 0.7525 | 0.7335 | 0.8360 |
0.0 | 369.57 | 8500 | 1.3845 | 0.7348 | 0.7746 | 0.7542 | 0.8422 |
0.0 | 391.3 | 9000 | 1.3238 | 0.7283 | 0.7660 | 0.7467 | 0.8499 |
0.0 | 413.04 | 9500 | 1.3677 | 0.7321 | 0.7672 | 0.7492 | 0.8492 |
0.0001 | 434.78 | 10000 | 1.3790 | 0.7420 | 0.7759 | 0.7586 | 0.8474 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1