checkpoints

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Precision: 0.3111
  • Recall: 0.5225
  • F1: 0.3900
  • Loss: 0.1579

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step F1 Validation Loss Precision Recall
0.2077 16.13 500 0 0.2127 0 0
0.1792 32.26 1000 0.2520 0.1668 0.2345 0.2723
0.1063 48.39 1500 0.2491 0.1439 0.5851 0.1582
0.1147 64.52 2000 0.3900 0.1579 0.3111 0.5225
0.0718 80.65 2500 0.4216 0.2598 0.3328 0.5753
0.0503 96.77 3000 0.4471 0.1888 0.3563 0.6002
0.0823 112.9 3500 0.4302 0.2690 0.3157 0.6750
0.0586 129.03 4000 0.4360 0.2429 0.3211 0.6788
0.0604 145.16 4500 0.4578 0.2745 0.3503 0.6606
0.0603 161.29 5000 0.4630 0.2694 0.3483 0.6903
0.0434 177.42 5500 0.4575 0.3200 0.3417 0.6922
0.0367 193.55 6000 0.4523 0.2991 0.3321 0.7085
0.0402 209.68 6500 0.4664 0.2628 0.3507 0.6961
0.027 225.81 7000 0.4671 0.3375 0.3495 0.7037
0.0363 241.94 7500 0.3445 0.7018 0.4621 0.3380
0.0411 258.06 8000 0.3641 0.6769 0.4735 0.2984
0.0348 274.19 8500 0.3530 0.6951 0.4682 0.3455
0.0031 290.32 9000 0.3510 0.6999 0.4675 0.3841
0.0259 306.45 9500 0.3532 0.6989 0.4693 0.3586
0.0129 322.58 10000 0.3513 0.7009 0.4680 0.3604

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
18
Safetensors
Model size
287M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kavg/LiLT-RE-ES

Finetuned
(29)
this model
Finetunes
1 model