Upload app.py
#6
by
shibly100
- opened
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Step 1: Define the model name from Hugging Face Hub
|
6 |
+
model_name = "deepseek-ai/deepseek-7b-instruct"
|
7 |
+
|
8 |
+
# Step 2: Load the tokenizer and model
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_name,
|
12 |
+
torch_dtype=torch.float16, # Use float16 for efficiency
|
13 |
+
device_map="auto" # Automatically assigns GPU or CPU
|
14 |
+
)
|
15 |
+
|
16 |
+
# Step 3: Define a simple function to generate model responses
|
17 |
+
def chat_function(prompt):
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
19 |
+
outputs = model.generate(**inputs, max_length=300, do_sample=True, temperature=0.7)
|
20 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
return response
|
22 |
+
|
23 |
+
# Step 4: Create the Gradio interface
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=chat_function,
|
26 |
+
inputs=gr.Textbox(lines=5, placeholder="Type your question here..."),
|
27 |
+
outputs="text",
|
28 |
+
title="🦾 DeepSeek LLM Assistant",
|
29 |
+
description="Ask me anything! Powered by DeepSeek-7B-Instruct 🪐"
|
30 |
+
)
|
31 |
+
|
32 |
+
# Step 5: Launch the app
|
33 |
+
if __name__ == "__main__":
|
34 |
+
iface.launch()
|