(https://huggingface.co/WhereIsAI/UAE-Large-V1) with sentence-transformers tag to do Average Pooling

Usage

python -m pip install -U angle-emb
  1. Non-Retrieval Tasks
from angle_emb import AnglE

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
  1. Retrieval Tasks

For retrieval purposes, please use the prompt Prompts.C.

from angle_emb import AnglE, Prompts

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
angle.set_prompt(prompt=Prompts.C)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)

Citation

If you use our pre-trained models, welcome to support us by citing our work:

@article{li2023angle,
  title={AnglE-optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}
Downloads last month
93
Safetensors
Model size
335M params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Spaces using karrar-alwaili/UAE-Large-V1 4

Collection including karrar-alwaili/UAE-Large-V1