git-base-food / README.md
kariver's picture
End of training
c758cc3
metadata
license: mit
base_model: microsoft/git-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
model-index:
  - name: git-base-food
    results: []

git-base-food

This model is a fine-tuned version of microsoft/git-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0444
  • Wer Score: 10.0470

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer Score
No log 1.05 20 7.3069 113.3758
No log 2.11 40 5.3566 3.2282
No log 3.16 60 3.4409 1.1879
No log 4.21 80 1.7218 1.1007
No log 5.26 100 0.5834 1.0872
No log 6.32 120 0.1684 1.3020
No log 7.37 140 0.0720 2.9732
No log 8.42 160 0.0507 2.0805
No log 9.47 180 0.0467 3.0336
No log 10.53 200 0.0415 10.6107
No log 11.58 220 0.0425 7.7383
No log 12.63 240 0.0426 14.1745
No log 13.68 260 0.0434 6.0067
No log 14.74 280 0.0447 10.5503
No log 15.79 300 0.0434 9.1678
No log 16.84 320 0.0439 10.8591
No log 17.89 340 0.0446 10.0470
No log 18.95 360 0.0444 10.1208
No log 20.0 380 0.0444 10.0470

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1