e5-base-german-sentence-similarity

This model is a fine-tuned version of intfloat/e5-base on german subset of the stsb_multi_mt dataset. It achieves the following results on the evaluation set:

Validation:

  • Loss: 0.9118
  • Pearson: 0.7952 Test:
  • Loss: 1.2162
  • Pearson: 0.7252

Usage

#install sentence-transformers
!pip install -U sentence-transformers

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("kaixkhazaki/e5-base-german-sentence-similarity")

sentences = [
    'Ein älterer Herr genießt die Natur auf einer Parkbank.',
    'Ein alter Mann vertieft sich in eine Zeitung im Stadtpark.',
    'Ein Teenager hört Musik auf einer Bank.'
]
embeddings = model.encode(sentences)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)

>>
tensor([[1.0000, 0.9044, 0.7919],
        [0.9044, 1.0000, 0.7757],
        [0.7919, 0.7757, 1.0000]])

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Training procedure

additional dropout implemented on model to avoid overfitting(hidden_dropout_prob=0.25 ,attention_probs_dropout_prob = 0.25)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Pearson
1.6556 1.0 360 1.3086 0.7176
1.0113 2.0 720 1.2079 0.7563
1.0205 3.0 1080 1.2091 0.7639
0.8876 4.0 1440 0.9325 0.7910
0.6762 5.0 1800 0.9118 0.7952
0.5615 6.0 2160 0.9772 0.7910
0.6387 7.0 2520 0.9085 0.7933

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.2.2
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
23
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the HF Inference API does not support transformers models with pipeline type sentence-similarity

Model tree for kaixkhazaki/e5-base-german-sentence-similarity

Base model

intfloat/e5-base
Finetuned
(3)
this model

Dataset used to train kaixkhazaki/e5-base-german-sentence-similarity