JW17's picture
Update README.md
24c1172 verified
|
raw
history blame
3.72 kB
metadata
language:
  - en
license: mit
base_model:
  - mistralai/Mistral-7B-v0.1
datasets:
  - argilla/distilabel-capybara-dpo-7k-binarized
pipeline_tag: text-generation
model-index:
  - name: Mistral-ORPO-Capybara-7k
    results:
      - task:
          type: text-generation
        dataset:
          name: AlpacaEval 2 (LC)
          type: AlpacaEval
        metrics:
          - type: AlpacaEval 2.0
            value: 15.88%
            name: Win Rate
        source:
          url: https://tatsu-lab.github.io/alpaca_eval/
          name: self-reported
      - task:
          type: text-generation
        dataset:
          name: MT-Bench
          type: MT-Bench
        metrics:
          - type: MT-Bench
            value: 7.444
            name: Score
        source:
          url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/
          name: self-reported

Mistral-ORPO-Capybara-7k (7B)

Mistral-ORPO is a fine-tuned version of mistralai/Mistral-7B-v0.1 using the odds ratio preference optimization (ORPO). With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase.

Mistral-ORPO-ORPO-Capybara-7k is fine-tuned for 2.5 hours on four A100s exclusively on the 7k instances of the distilled Capybara paired multi-turn conversation dataset, argilla/distilabel-capybara-dpo-7k-binarized, by Argilla.

๐Ÿ‘ Model Performance

1) AlpacaEval & MT-Bench

Model Name Size Align MT-Bench AlpacaEval 2.0 (LC)
Mistral-ORPO-Capybara-7k 7B ORPO 7.44 15.9
Mistral-ORPO-ฮฒ 7B ORPO 7.32 14.7
Zephyr ฮฒ 7B DPO 7.34 13.2
TULU-2-DPO 13B DPO 7.00 11.6
Llama-2-Chat 7B RLHF 6.27 5.4
Llama-2-Chat 13B RLHF 6.65 8.4

2) IFEval

Model Type Prompt-Strict Prompt-Loose Inst-Strict Inst-Loose
Mistral-ORPO-Capybara-7k 0.5083 0.5083 0.5827 0.6127
Mistral-ORPO-โบ 0.5009 0.5083 0.5995 0.6163
Mistral-ORPO-ฮฒ 0.5287 0.5564 0.6355 0.6619

๐Ÿ—บ๏ธ MT-Bench by Category

image/png

๐Ÿ–ฅ๏ธ Inference

from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("kaist-ai/mistral-orpo-capybara-7k")
tokenizer = AutoTokenizer.from_pretrained("kaist-ai/mistral-orpo-capybara-7k")
# Apply chat template
query = [{'role': 'user', 'content': 'Hi! How are you doing?'}]
prompt = tokenizer.apply_chat_template(query, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors='pt')
# Generation with specific configurations
output = model.generate(
  **inputs,
  max_new_tokens=128,
  do_sample=True,
  temperature=0.7
)
response = tokenizer.batch_decode(output)
#<|user|>
#Hi! How are you doing?</s>
#<|assistant|>
#I'm doing well, thank you! How are you?</s>

๐Ÿ“Ž Citation

@misc{hong2024orpo,
      title={ORPO: Monolithic Preference Optimization without Reference Model}, 
      author={Jiwoo Hong and Noah Lee and James Thorne},
      year={2024},
      eprint={2403.07691},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}