En-Nso_update3

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-nso on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4218
  • Bleu: 24.5765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Bleu
3.6568 1.0 867 3.0185 18.4004
2.7574 2.0 1734 2.7774 20.3167
2.4522 3.0 2601 2.6436 22.1868
2.3298 4.0 3468 2.5732 22.6221
2.1563 5.0 4335 2.5225 22.6937
2.0177 6.0 5202 2.4917 23.2204
1.9407 7.0 6069 2.4656 23.3616
1.8758 8.0 6936 2.4509 23.5496
1.8167 9.0 7803 2.4426 23.6263
1.7566 10.0 8670 2.4345 24.0730
1.7254 11.0 9537 2.4281 24.1627
1.7088 12.0 10404 2.4252 24.1109
1.6731 13.0 11271 2.4226 24.1018
1.6574 14.0 12138 2.4211 23.9186
1.6481 15.0 13005 2.4218 24.1323

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.