jxuhf's picture
Update README.md
d617c9a
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - matthews_correlation
model_index:
  - name: roberta-base-finetuned-cola
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          args: cola
        metric:
          name: Matthews Correlation
          type: matthews_correlation
          value: 0.557882735147727

roberta-base-finetuned-cola

This model is a fine-tuned version of roberta-base on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4716
  • Matthews Correlation: 0.5579

Model description

More information needed

Intended uses & limitations

from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("jxuhf/roberta-base-finetuned-cola")

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Matthews Correlation
0.4981 1.0 535 0.5162 0.5081
0.314 2.0 1070 0.4716 0.5579

Framework versions

  • Transformers 4.9.0
  • Pytorch 1.9.0+cu102
  • Datasets 1.10.2
  • Tokenizers 0.10.3