just1nseo's picture
End of training
7ffa9d1 verified
metadata
base_model: alignment-handbook/zephyr-7b-sft-full
datasets:
  - generation/UF
library_name: peft
license: apache-2.0
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-dpop-qlora-uf-ours-5e-7
    results: []

zephyr-dpop-qlora-uf-ours-5e-7

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the generation/UF dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9543
  • Positive Losses: 2.5736
  • Dpo Losses: 0.6658
  • Rewards/chosen: 0.0602
  • Rewards/rejected: -0.0038
  • Rewards/accuracies: 0.6300
  • Rewards/margins: 0.0640
  • Rewards/margins Max: 0.3473
  • Rewards/margins Min: -0.1824
  • Rewards/margins Std: 0.1766
  • Logps/rejected: -258.9606
  • Logps/chosen: -278.5768
  • Logits/rejected: -2.6741
  • Logits/chosen: -2.7121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Positive Losses Dpo Losses Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Rewards/margins Max Rewards/margins Min Rewards/margins Std Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6884 0.28 100 0.6931 0.0111 0.6918 0.0136 0.0108 0.6080 0.0028 0.0179 -0.0107 0.0094 -257.4949 -283.2318 -2.7651 -2.8042
0.6627 0.56 200 0.6995 0.1223 0.6858 0.0465 0.0311 0.5960 0.0153 0.0899 -0.0496 0.0465 -255.4640 -279.9481 -2.7485 -2.7871
0.6293 0.85 300 0.7193 0.3552 0.6803 0.0675 0.0398 0.5960 0.0278 0.1601 -0.0863 0.0826 -254.6033 -277.8385 -2.7306 -2.7684
0.6236 1.13 400 0.7519 0.6894 0.6756 0.0800 0.0412 0.6090 0.0388 0.2182 -0.1140 0.1113 -254.4585 -276.5968 -2.7119 -2.7494
0.6009 1.41 500 0.8434 1.5495 0.6718 0.0639 0.0154 0.6090 0.0484 0.2709 -0.1440 0.1389 -257.0343 -278.2061 -2.6920 -2.7295
0.6136 1.69 600 0.8727 1.8302 0.6691 0.0687 0.0134 0.6130 0.0553 0.3049 -0.1595 0.1553 -257.2360 -277.7244 -2.6827 -2.7203
0.5918 1.97 700 0.8998 2.0811 0.6677 0.0671 0.0081 0.6220 0.0591 0.3231 -0.1685 0.1641 -257.7734 -277.8808 -2.6797 -2.7172
0.5636 2.25 800 0.9371 2.4201 0.6667 0.0611 -0.0007 0.6260 0.0618 0.3370 -0.1777 0.1716 -258.6473 -278.4820 -2.6734 -2.7116
0.5736 2.54 900 0.9591 2.6268 0.6659 0.0578 -0.0060 0.6320 0.0639 0.3467 -0.1823 0.1764 -259.1817 -278.8090 -2.6726 -2.7107
0.5825 2.82 1000 0.9543 2.5810 0.6658 0.0598 -0.0042 0.6290 0.0640 0.3475 -0.1826 0.1767 -259.0028 -278.6134 -2.6749 -2.7127

Framework versions

  • PEFT 0.7.1
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2