just1nseo's picture
End of training
2110cfd verified
metadata
base_model: alignment-handbook/zephyr-7b-sft-full
datasets:
  - generation/UF
library_name: peft
license: apache-2.0
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-dpop-qlora-uf-ours-5e-6
    results: []

zephyr-dpop-qlora-uf-ours-5e-6

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the generation/UF dataset. It achieves the following results on the evaluation set:

  • Loss: 5.1264
  • Positive Losses: 43.1884
  • Dpo Losses: 0.6101
  • Rewards/chosen: -0.3903
  • Rewards/rejected: -0.7274
  • Rewards/accuracies: 0.6670
  • Rewards/margins: 0.3370
  • Rewards/margins Max: 1.4167
  • Rewards/margins Min: -0.8378
  • Rewards/margins Std: 0.7707
  • Logps/rejected: -331.3143
  • Logps/chosen: -323.6263
  • Logits/rejected: -2.4808
  • Logits/chosen: -2.5277

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Positive Losses Dpo Losses Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Rewards/margins Max Rewards/margins Min Rewards/margins Std Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6302 0.28 100 0.8170 1.2658 0.6732 0.0877 0.0421 0.5920 0.0456 0.2717 -0.1472 0.1389 -254.3717 -275.8216 -2.6655 -2.7015
0.5709 0.56 200 2.1527 14.1341 0.6518 -0.0932 -0.2071 0.6360 0.1139 0.6302 -0.3647 0.3297 -279.2877 -293.9101 -2.6591 -2.6989
0.4758 0.85 300 2.2508 15.0103 0.6396 -0.0829 -0.2324 0.6590 0.1495 0.7147 -0.4138 0.3813 -281.8231 -292.8875 -2.6866 -2.7294
0.4857 1.13 400 2.8413 20.4422 0.6295 -0.1464 -0.3473 0.6540 0.2010 0.9605 -0.5524 0.5026 -293.3139 -299.2286 -2.5810 -2.6240
0.6015 1.41 500 2.4297 16.2472 0.6215 -0.0798 -0.3011 0.6660 0.2213 0.9834 -0.5416 0.5125 -288.6871 -292.5703 -2.5803 -2.6246
0.4849 1.69 600 3.8077 30.0769 0.6153 -0.2435 -0.5155 0.6630 0.2721 1.1651 -0.6779 0.6337 -310.1338 -308.9421 -2.5659 -2.6120
0.4012 1.97 700 4.4359 36.7814 0.6160 -0.3161 -0.6003 0.6660 0.2841 1.2285 -0.7320 0.6759 -318.6039 -316.2043 -2.5208 -2.5672
0.3245 2.25 800 4.9873 41.8073 0.6123 -0.3752 -0.6988 0.6660 0.3236 1.3768 -0.8214 0.7506 -328.4567 -322.1156 -2.4952 -2.5421
0.3018 2.54 900 5.0342 42.1224 0.6084 -0.3810 -0.7194 0.6680 0.3383 1.4141 -0.8336 0.7645 -330.5147 -322.6951 -2.4804 -2.5276
0.4364 2.82 1000 5.0975 42.8746 0.6098 -0.3872 -0.7242 0.6680 0.3370 1.4157 -0.8369 0.7695 -331.0000 -323.3101 -2.4816 -2.5285

Framework versions

  • PEFT 0.7.1
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2