metadata
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
base_model: alignment-handbook/zephyr-7b-sft-full
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-dpop-qlora-uf-5e-7-real
results: []
zephyr-dpop-qlora-uf-5e-7-real
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.6811
- Positive Losses: 0.1281
- Dpo Losses: 0.6626
- Rewards/chosen: 0.1641
- Rewards/rejected: 0.0983
- Rewards/accuracies: 0.7262
- Rewards/margins: 0.0657
- Rewards/margins Max: 0.2505
- Rewards/margins Min: -0.1023
- Rewards/margins Std: 0.1168
- Logps/rejected: -252.3152
- Logps/chosen: -268.0898
- Logits/rejected: -2.7475
- Logits/chosen: -2.7856
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Positive Losses | Dpo Losses | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Rewards/margins Max | Rewards/margins Min | Rewards/margins Std | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6943 | 0.03 | 100 | 0.6936 | 0.0070 | 0.6929 | 0.0051 | 0.0047 | 0.5556 | 0.0004 | 0.0054 | -0.0049 | 0.0034 | -261.6790 | -283.9844 | -2.7826 | -2.8207 |
0.6937 | 0.05 | 200 | 0.6932 | 0.0058 | 0.6925 | 0.0087 | 0.0073 | 0.5913 | 0.0014 | 0.0083 | -0.0053 | 0.0045 | -261.4165 | -283.6240 | -2.7846 | -2.8225 |
0.6932 | 0.08 | 300 | 0.6918 | 0.0111 | 0.6908 | 0.0176 | 0.0128 | 0.6706 | 0.0048 | 0.0213 | -0.0101 | 0.0104 | -260.8730 | -282.7396 | -2.7791 | -2.8173 |
0.6923 | 0.1 | 400 | 0.6902 | 0.0155 | 0.6883 | 0.0367 | 0.0269 | 0.6786 | 0.0099 | 0.0426 | -0.0200 | 0.0206 | -259.4627 | -280.8207 | -2.7795 | -2.8175 |
0.6931 | 0.13 | 500 | 0.6883 | 0.0265 | 0.6845 | 0.0593 | 0.0416 | 0.6865 | 0.0177 | 0.0763 | -0.0341 | 0.0362 | -257.9933 | -278.5678 | -2.7736 | -2.8118 |
0.6831 | 0.16 | 600 | 0.6870 | 0.0395 | 0.6813 | 0.0836 | 0.0590 | 0.6964 | 0.0245 | 0.1063 | -0.0471 | 0.0502 | -256.2458 | -276.1382 | -2.7761 | -2.8139 |
0.6843 | 0.18 | 700 | 0.6863 | 0.0531 | 0.6787 | 0.0901 | 0.0600 | 0.7083 | 0.0301 | 0.1278 | -0.0553 | 0.0599 | -256.1454 | -275.4836 | -2.7667 | -2.8047 |
0.678 | 0.21 | 800 | 0.6882 | 0.0907 | 0.6756 | 0.0978 | 0.0610 | 0.7004 | 0.0368 | 0.1540 | -0.0663 | 0.0722 | -256.0468 | -274.7102 | -2.7649 | -2.8027 |
0.6788 | 0.24 | 900 | 0.6861 | 0.0828 | 0.6741 | 0.1163 | 0.0761 | 0.7123 | 0.0401 | 0.1679 | -0.0693 | 0.0777 | -254.5357 | -272.8672 | -2.7642 | -2.8025 |
0.6883 | 0.26 | 1000 | 0.6859 | 0.0910 | 0.6726 | 0.1215 | 0.0781 | 0.7143 | 0.0434 | 0.1772 | -0.0735 | 0.0821 | -254.3346 | -272.3451 | -2.7648 | -2.8032 |
0.692 | 0.29 | 1100 | 0.6851 | 0.0917 | 0.6716 | 0.1258 | 0.0803 | 0.7024 | 0.0455 | 0.1845 | -0.0761 | 0.0853 | -254.1160 | -271.9105 | -2.7703 | -2.8088 |
0.6781 | 0.31 | 1200 | 0.6848 | 0.0888 | 0.6704 | 0.1337 | 0.0855 | 0.7163 | 0.0481 | 0.1933 | -0.0787 | 0.0893 | -253.5947 | -271.1252 | -2.7672 | -2.8056 |
0.6977 | 0.34 | 1300 | 0.6844 | 0.0955 | 0.6697 | 0.1365 | 0.0866 | 0.7222 | 0.0498 | 0.1984 | -0.0814 | 0.0917 | -253.4859 | -270.8478 | -2.7666 | -2.8049 |
0.6773 | 0.37 | 1400 | 0.6852 | 0.1091 | 0.6683 | 0.1360 | 0.0832 | 0.7163 | 0.0529 | 0.2084 | -0.0866 | 0.0967 | -253.8343 | -270.8923 | -2.7626 | -2.8007 |
0.6802 | 0.39 | 1500 | 0.6854 | 0.1243 | 0.6673 | 0.1396 | 0.0845 | 0.7202 | 0.0550 | 0.2155 | -0.0895 | 0.1001 | -253.6978 | -270.5392 | -2.7549 | -2.7934 |
0.6816 | 0.42 | 1600 | 0.6848 | 0.1226 | 0.6669 | 0.1427 | 0.0866 | 0.7262 | 0.0561 | 0.2196 | -0.0916 | 0.1025 | -253.4888 | -270.2238 | -2.7574 | -2.7953 |
0.6737 | 0.44 | 1700 | 0.6863 | 0.1428 | 0.6654 | 0.1435 | 0.0840 | 0.7202 | 0.0595 | 0.2302 | -0.0957 | 0.1073 | -253.7508 | -270.1495 | -2.7550 | -2.7931 |
0.6913 | 0.47 | 1800 | 0.6822 | 0.1097 | 0.6662 | 0.1546 | 0.0971 | 0.7202 | 0.0576 | 0.2258 | -0.0916 | 0.1046 | -252.4411 | -269.0311 | -2.7541 | -2.7922 |
0.691 | 0.5 | 1900 | 0.6836 | 0.1337 | 0.6649 | 0.1512 | 0.0907 | 0.7222 | 0.0605 | 0.2345 | -0.0960 | 0.1092 | -253.0802 | -269.3756 | -2.7463 | -2.7846 |
0.6743 | 0.52 | 2000 | 0.6820 | 0.1170 | 0.6653 | 0.1553 | 0.0956 | 0.7183 | 0.0597 | 0.2328 | -0.0959 | 0.1085 | -252.5889 | -268.9686 | -2.7460 | -2.7845 |
0.6787 | 0.55 | 2100 | 0.6826 | 0.1255 | 0.6646 | 0.1546 | 0.0933 | 0.7183 | 0.0613 | 0.2373 | -0.0970 | 0.1105 | -252.8206 | -269.0393 | -2.7445 | -2.7832 |
0.6738 | 0.58 | 2200 | 0.6816 | 0.1157 | 0.6645 | 0.1584 | 0.0968 | 0.7183 | 0.0615 | 0.2383 | -0.0969 | 0.1108 | -252.4646 | -268.6587 | -2.7418 | -2.7803 |
0.675 | 0.6 | 2300 | 0.6816 | 0.1210 | 0.6642 | 0.1590 | 0.0969 | 0.7242 | 0.0621 | 0.2404 | -0.0974 | 0.1118 | -252.4595 | -268.5912 | -2.7450 | -2.7834 |
0.6821 | 0.63 | 2400 | 0.6832 | 0.1411 | 0.6633 | 0.1563 | 0.0921 | 0.7202 | 0.0642 | 0.2465 | -0.1010 | 0.1148 | -252.9347 | -268.8607 | -2.7466 | -2.7849 |
0.6881 | 0.65 | 2500 | 0.6830 | 0.1426 | 0.6631 | 0.1570 | 0.0922 | 0.7222 | 0.0648 | 0.2474 | -0.1022 | 0.1156 | -252.9272 | -268.7935 | -2.7492 | -2.7874 |
0.6871 | 0.68 | 2600 | 0.6808 | 0.1158 | 0.6637 | 0.1633 | 0.1001 | 0.7242 | 0.0632 | 0.2447 | -0.0991 | 0.1134 | -252.1409 | -268.1626 | -2.7451 | -2.7836 |
0.683 | 0.71 | 2700 | 0.6799 | 0.1090 | 0.6640 | 0.1648 | 0.1022 | 0.7242 | 0.0627 | 0.2422 | -0.0980 | 0.1124 | -251.9336 | -268.0138 | -2.7438 | -2.7825 |
0.6785 | 0.73 | 2800 | 0.6809 | 0.1194 | 0.6634 | 0.1626 | 0.0986 | 0.7143 | 0.0640 | 0.2456 | -0.1001 | 0.1142 | -252.2893 | -268.2341 | -2.7442 | -2.7829 |
0.6804 | 0.76 | 2900 | 0.6822 | 0.1346 | 0.6629 | 0.1608 | 0.0956 | 0.7202 | 0.0652 | 0.2495 | -0.1023 | 0.1162 | -252.5925 | -268.4146 | -2.7461 | -2.7847 |
0.6741 | 0.79 | 3000 | 0.6808 | 0.1180 | 0.6631 | 0.1638 | 0.0991 | 0.7202 | 0.0648 | 0.2480 | -0.1005 | 0.1153 | -252.2409 | -268.1100 | -2.7461 | -2.7845 |
0.6856 | 0.81 | 3100 | 0.6812 | 0.1276 | 0.6628 | 0.1627 | 0.0973 | 0.7222 | 0.0654 | 0.2498 | -0.1020 | 0.1164 | -252.4184 | -268.2234 | -2.7438 | -2.7823 |
0.6678 | 0.84 | 3200 | 0.6809 | 0.1244 | 0.6627 | 0.1636 | 0.0981 | 0.7222 | 0.0655 | 0.2500 | -0.1016 | 0.1161 | -252.3354 | -268.1345 | -2.7472 | -2.7854 |
0.6786 | 0.86 | 3300 | 0.6811 | 0.1267 | 0.6627 | 0.1639 | 0.0983 | 0.7222 | 0.0656 | 0.2502 | -0.1019 | 0.1165 | -252.3217 | -268.1092 | -2.7425 | -2.7811 |
0.675 | 0.89 | 3400 | 0.6808 | 0.1222 | 0.6627 | 0.1646 | 0.0991 | 0.7202 | 0.0655 | 0.2497 | -0.1011 | 0.1161 | -252.2420 | -268.0397 | -2.7448 | -2.7833 |
0.6743 | 0.92 | 3500 | 0.6805 | 0.1215 | 0.6627 | 0.1645 | 0.0990 | 0.7242 | 0.0655 | 0.2502 | -0.1016 | 0.1164 | -252.2541 | -268.0490 | -2.7474 | -2.7856 |
0.6778 | 0.94 | 3600 | 0.6810 | 0.1279 | 0.6626 | 0.1643 | 0.0985 | 0.7183 | 0.0658 | 0.2507 | -0.1017 | 0.1167 | -252.3022 | -268.0681 | -2.7470 | -2.7853 |
0.6788 | 0.97 | 3700 | 0.6811 | 0.1286 | 0.6627 | 0.1640 | 0.0983 | 0.7222 | 0.0657 | 0.2507 | -0.1021 | 0.1167 | -252.3195 | -268.0980 | -2.7427 | -2.7813 |
0.6668 | 0.99 | 3800 | 0.6811 | 0.1287 | 0.6627 | 0.1640 | 0.0983 | 0.7202 | 0.0657 | 0.2509 | -0.1025 | 0.1169 | -252.3186 | -268.0970 | -2.7445 | -2.7830 |
Framework versions
- PEFT 0.7.1
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2