judithrosell
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: m3rg-iitd/matscibert
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: VF_MatSciBERT_ST_1800
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# VF_MatSciBERT_ST_1800
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1571
|
25 |
+
- Precision: 0.9763
|
26 |
+
- Recall: 0.9819
|
27 |
+
- F1: 0.9791
|
28 |
+
- Accuracy: 0.9755
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.1492 | 1.0 | 569 | 0.0954 | 0.9709 | 0.9754 | 0.9732 | 0.9704 |
|
60 |
+
| 0.0548 | 2.0 | 1138 | 0.0934 | 0.9726 | 0.9785 | 0.9756 | 0.9726 |
|
61 |
+
| 0.0348 | 3.0 | 1707 | 0.1098 | 0.9749 | 0.9801 | 0.9775 | 0.9738 |
|
62 |
+
| 0.0213 | 4.0 | 2276 | 0.1268 | 0.9739 | 0.9813 | 0.9776 | 0.9735 |
|
63 |
+
| 0.0141 | 5.0 | 2845 | 0.1326 | 0.9748 | 0.9806 | 0.9777 | 0.9740 |
|
64 |
+
| 0.0093 | 6.0 | 3414 | 0.1402 | 0.9750 | 0.9808 | 0.9779 | 0.9743 |
|
65 |
+
| 0.0062 | 7.0 | 3983 | 0.1541 | 0.9741 | 0.9805 | 0.9773 | 0.9733 |
|
66 |
+
| 0.0033 | 8.0 | 4552 | 0.1682 | 0.9741 | 0.9814 | 0.9777 | 0.9732 |
|
67 |
+
| 0.0026 | 9.0 | 5121 | 0.1638 | 0.9749 | 0.9821 | 0.9785 | 0.9743 |
|
68 |
+
| 0.0021 | 10.0 | 5690 | 0.1571 | 0.9763 | 0.9819 | 0.9791 | 0.9755 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.44.2
|
74 |
+
- Pytorch 2.4.0+cu121
|
75 |
+
- Datasets 2.21.0
|
76 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437387124
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cc497b734ff051e9c8e3f33d377dc25cc3cc5574657ba86e2cdba73f880d617
|
3 |
size 437387124
|
runs/Sep05_13-26-29_0cf716ad2f0b/events.out.tfevents.1725542792.0cf716ad2f0b.162.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e089781855dd7f226fd3b2d4431c73084fa37f8e806d7d07472c67995bc23b80
|
3 |
+
size 13397
|