VF_MatSciBERT_ST_1800

This model is a fine-tuned version of m3rg-iitd/matscibert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1894
  • Precision: 0.7360
  • Recall: 0.7770
  • F1: 0.7560
  • Accuracy: 0.9556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 30 0.3205 0.4448 0.2093 0.2847 0.9095
No log 2.0 60 0.2400 0.6346 0.6075 0.6208 0.9376
No log 3.0 90 0.2236 0.6764 0.7010 0.6885 0.9450
No log 4.0 120 0.1959 0.6664 0.7127 0.6888 0.9453
No log 5.0 150 0.1958 0.7177 0.7514 0.7342 0.9519
No log 6.0 180 0.1802 0.7180 0.7666 0.7415 0.9541
No log 7.0 210 0.1911 0.7316 0.7668 0.7488 0.9546
No log 8.0 240 0.1914 0.7384 0.7711 0.7544 0.9554
No log 9.0 270 0.1873 0.7366 0.7745 0.7551 0.9556
No log 10.0 300 0.1894 0.7360 0.7770 0.7560 0.9556

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judithrosell/VF_MatSciBERT_ST_1800

Finetuned
(12)
this model