JNLPBA_SciBERT_NER

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1472

  • Seqeval classification report: precision recall f1-score support

       DNA       0.83      0.89      0.86      2106
       RNA       0.88      0.89      0.88      3516
    

    cell_line 0.74 0.80 0.77 526 cell_type 0.78 0.83 0.80 1475 protein 0.98 0.97 0.98 37428

    micro avg 0.96 0.96 0.96 45051 macro avg 0.84 0.87 0.86 45051

weighted avg 0.96 0.96 0.96 45051

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Seqeval classification report
0.233 1.0 582 0.1513 precision recall f1-score support
     DNA       0.82      0.89      0.85      2106
     RNA       0.87      0.89      0.88      3516

cell_line 0.72 0.79 0.76 526 cell_type 0.79 0.78 0.79 1475 protein 0.98 0.97 0.98 37428

micro avg 0.95 0.95 0.95 45051 macro avg 0.84 0.87 0.85 45051 weighted avg 0.95 0.95 0.95 45051 | | 0.138 | 2.0 | 1164 | 0.1486 | precision recall f1-score support

     DNA       0.85      0.85      0.85      2106
     RNA       0.89      0.87      0.88      3516

cell_line 0.71 0.80 0.75 526 cell_type 0.77 0.82 0.79 1475 protein 0.98 0.97 0.98 37428

micro avg 0.96 0.95 0.95 45051 macro avg 0.84 0.86 0.85 45051 weighted avg 0.96 0.95 0.96 45051 | | 0.1191 | 3.0 | 1746 | 0.1472 | precision recall f1-score support

     DNA       0.83      0.89      0.86      2106
     RNA       0.88      0.89      0.88      3516

cell_line 0.74 0.80 0.77 526 cell_type 0.78 0.83 0.80 1475 protein 0.98 0.97 0.98 37428

micro avg 0.96 0.96 0.96 45051 macro avg 0.84 0.87 0.86 45051 weighted avg 0.96 0.96 0.96 45051 |

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
21
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judithrosell/JNLPBA_SciBERT_NER

Finetuned
(61)
this model