Final_Biomaterials_ST_cems_6000

This model is a fine-tuned version of m3rg-iitd/matscibert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0758
  • Precision: 0.9889
  • Recall: 0.9876
  • F1: 0.9883
  • Accuracy: 0.9887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0304 1.0 1564 0.0325 0.9898 0.9862 0.9880 0.9886
0.0203 2.0 3128 0.0347 0.9894 0.9886 0.9890 0.9893
0.0114 3.0 4692 0.0397 0.9882 0.9886 0.9884 0.9888
0.0063 4.0 6256 0.0496 0.9887 0.9878 0.9883 0.9885
0.0048 5.0 7820 0.0550 0.9892 0.9876 0.9884 0.9887
0.0028 6.0 9384 0.0609 0.9886 0.9875 0.9880 0.9884
0.0021 7.0 10948 0.0658 0.9893 0.9869 0.9881 0.9886
0.0012 8.0 12512 0.0724 0.9886 0.9884 0.9885 0.9888
0.0012 9.0 14076 0.0737 0.9890 0.9878 0.9884 0.9888
0.0007 10.0 15640 0.0758 0.9889 0.9876 0.9883 0.9887

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for judithrosell/Final_Biomaterials_ST_cems_6000

Finetuned
(14)
this model