BC5CDR_BlueBERT_NER / README.md
judithrosell's picture
End of training
9f1c395
---
license: cc0-1.0
base_model: bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
tags:
- generated_from_trainer
model-index:
- name: BC5CDR_BlueBERT_NER
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BC5CDR_BlueBERT_NER
This model is a fine-tuned version of [bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0944
- Seqeval classification report: precision recall f1-score support
Chemical 0.84 0.89 0.87 7079
Disease 0.82 0.85 0.83 4968
micro avg 0.83 0.87 0.85 12047
macro avg 0.83 0.87 0.85 12047
weighted avg 0.83 0.87 0.85 12047
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| No log | 1.0 | 143 | 0.1111 | precision recall f1-score support
Chemical 0.82 0.86 0.84 7079
Disease 0.76 0.83 0.80 4968
micro avg 0.79 0.85 0.82 12047
macro avg 0.79 0.85 0.82 12047
weighted avg 0.79 0.85 0.82 12047
|
| No log | 2.0 | 286 | 0.0987 | precision recall f1-score support
Chemical 0.83 0.89 0.86 7079
Disease 0.78 0.86 0.82 4968
micro avg 0.81 0.88 0.84 12047
macro avg 0.80 0.87 0.84 12047
weighted avg 0.81 0.88 0.84 12047
|
| No log | 3.0 | 429 | 0.0944 | precision recall f1-score support
Chemical 0.84 0.89 0.87 7079
Disease 0.82 0.85 0.83 4968
micro avg 0.83 0.87 0.85 12047
macro avg 0.83 0.87 0.85 12047
weighted avg 0.83 0.87 0.85 12047
|
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0