|
--- |
|
license: cc0-1.0 |
|
base_model: bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: BC5CDR_BlueBERT_NER |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BC5CDR_BlueBERT_NER |
|
|
|
This model is a fine-tuned version of [bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0944 |
|
- Seqeval classification report: precision recall f1-score support |
|
|
|
Chemical 0.84 0.89 0.87 7079 |
|
Disease 0.82 0.85 0.83 4968 |
|
|
|
micro avg 0.83 0.87 0.85 12047 |
|
macro avg 0.83 0.87 0.85 12047 |
|
weighted avg 0.83 0.87 0.85 12047 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| No log | 1.0 | 143 | 0.1111 | precision recall f1-score support |
|
|
|
Chemical 0.82 0.86 0.84 7079 |
|
Disease 0.76 0.83 0.80 4968 |
|
|
|
micro avg 0.79 0.85 0.82 12047 |
|
macro avg 0.79 0.85 0.82 12047 |
|
weighted avg 0.79 0.85 0.82 12047 |
|
| |
|
| No log | 2.0 | 286 | 0.0987 | precision recall f1-score support |
|
|
|
Chemical 0.83 0.89 0.86 7079 |
|
Disease 0.78 0.86 0.82 4968 |
|
|
|
micro avg 0.81 0.88 0.84 12047 |
|
macro avg 0.80 0.87 0.84 12047 |
|
weighted avg 0.81 0.88 0.84 12047 |
|
| |
|
| No log | 3.0 | 429 | 0.0944 | precision recall f1-score support |
|
|
|
Chemical 0.84 0.89 0.87 7079 |
|
Disease 0.82 0.85 0.83 4968 |
|
|
|
micro avg 0.83 0.87 0.85 12047 |
|
macro avg 0.83 0.87 0.85 12047 |
|
weighted avg 0.83 0.87 0.85 12047 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|