|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3877 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
widget: |
|
- source_sentence: <summary>The "_fastdds_statistics_sample_datas" topic tracks the |
|
number of data messages or fragments sent by a DataWriter to deliver a single |
|
sample, excluding built-in and statistics DataWriters.</summary> |
|
sentences: |
|
- " If several new data changes are received at once, the callbacks may\n be triggered\ |
|
\ just once, instead of once per change. The application\n must keep *reading*\ |
|
\ or *taking* until no new changes are available." |
|
- 'The "_fastdds_statistics_sample_datas" statistics topic collects the |
|
|
|
number of user''s data messages (or data fragments in case that the |
|
|
|
message size is large enough to require RTPS fragmentation) that have |
|
|
|
been sent by the user''s DataWriter to completely deliver a single |
|
|
|
sample. This topic does not apply to builtin (related to Discovery) |
|
|
|
and statistics DataWriters.' |
|
- '+------------------------------------------------+-----------------------------------------+------------+-------------+ |
|
|
|
| Name | Description | |
|
Values | Default | |
|
|
|
|================================================|=========================================|============|=============| |
|
|
|
| "<disable_heartbeat_piggyback>" | See DisableHeartbeatPiggyback. | |
|
"bool" | "false" | |
|
|
|
+------------------------------------------------+-----------------------------------------+------------+-------------+' |
|
- source_sentence: 'The "enable_statistics_datawriter_with_profile()" method enables |
|
a DataWriter by searching a specific XML profile, requiring two parameters: the |
|
name of the XML profile and the name of the statistics topic to be enabled.' |
|
sentences: |
|
- '"enable_statistics_datawriter_with_profile()" method requires as |
|
|
|
parameters:' |
|
- "* **FIELDNAME**: is a reference to a field in the data-structure. The\n dot\ |
|
\ \".\" is used to navigate through nested structures. The number of\n dots that\ |
|
\ may be used in a FIELDNAME is unlimited. The FIELDNAME can\n refer to fields\ |
|
\ at any depth in the data structure. The names of the\n field are those specified\ |
|
\ in the IDL definition of the corresponding\n structure." |
|
- " * The TopicQos describing the behavior of the Topic. If the\n provided\ |
|
\ value is \"TOPIC_QOS_DEFAULT\", the value of the Default\n TopicQos is used." |
|
- source_sentence: '<summary> ParticipantResourceLimitsQos configures allocation limits |
|
and physical memory usage for internal resources, including locators, participants, |
|
readers, writers, send buffers, data limits, and content filter discovery information. ' |
|
sentences: |
|
- "* \"max_properties\": Defines the maximum size, in octets, of the\n properties\ |
|
\ data in the local or remote participant." |
|
- 'Log entries can be filtered upon consumption according to their |
|
|
|
Category component using regular expressions. Each time an entry is |
|
|
|
ready to be consumed, the category filter is applied using |
|
|
|
"std::regex_search()". To set a category filter, member function |
|
|
|
"Log::SetCategoryFilter()" is used:' |
|
- '"create_datawriter_with_profile()" will return a null pointer if there |
|
|
|
was an error during the operation, e.g. if the provided QoS is not |
|
|
|
compatible or is not supported. It is advisable to check that the |
|
|
|
returned value is a valid pointer.' |
|
- source_sentence: <summary>The Fast DDS Statistics module enables data collection |
|
and publication using DDS topics, which can be activated by setting "-DFASTDDS_STATISTICS=ON" |
|
during CMake configuration.> |
|
sentences: |
|
- ' |
|
|
|
"set_default_subscriber_qos()" member function also accepts the |
|
|
|
special value "SUBSCRIBER_QOS_DEFAULT" as input argument. This will |
|
|
|
reset the current default SubscriberQos to default constructed value |
|
|
|
"SubscriberQos()".' |
|
- '+------------------------------------------------------------------------------+-------------------------------------------+ |
|
|
|
| Data Member Name | |
|
Type | |
|
|
|
|==============================================================================|===========================================| |
|
|
|
| "last_instance_handle" | |
|
"InstanceHandle_t" | |
|
|
|
+------------------------------------------------------------------------------+-------------------------------------------+' |
|
- "Note: Please refer to Statistics QoS Troubleshooting for any problems\n related\ |
|
\ to the statistics module.\n" |
|
- source_sentence: The transport layer provides communication services between DDS |
|
entities, using UDPv4, UDPv6, TCPv4, TCPv6, and SHM transports. |
|
sentences: |
|
- '* **TCPv4**: TCP communication over IPv4 (see TCP Transport).' |
|
- 'The following table shows the supported primitive types and their |
|
|
|
corresponding "TypeKind". The "TypeKind" is used to query the |
|
|
|
DynamicTypeBuilderFactory for the specific primitive DynamicType.' |
|
- " @annotation MyAnnotation\n {\n long value;\n string name;\n\ |
|
\ };" |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: BGE base Fast-DDS summaries |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.33410672853828305 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.44547563805104406 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5034802784222738 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5661252900232019 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.33410672853828305 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.14849187935034802 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.10069605568445474 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.05661252900232018 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.33410672853828305 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.44547563805104406 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5034802784222738 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5661252900232019 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4437291164486755 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.40535023754281285 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4159956670067687 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.33642691415313225 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.44779582366589327 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.4965197215777262 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5777262180974478 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.33642691415313225 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.14926527455529776 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.09930394431554523 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.057772621809744774 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.33642691415313225 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.44779582366589327 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.4965197215777262 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5777262180974478 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.44632006141530195 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4056724855448751 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4154320968121733 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.3271461716937355 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.44779582366589327 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.4988399071925754 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5754060324825986 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.3271461716937355 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.14926527455529776 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.09976798143851506 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.05754060324825985 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.3271461716937355 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.44779582366589327 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.4988399071925754 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5754060324825986 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.44144646221433803 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.3997293116782675 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.41051122365814446 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.31554524361948955 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.42923433874709976 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.4802784222737819 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5754060324825986 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.31554524361948955 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.1430781129156999 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.09605568445475636 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.05754060324825985 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.31554524361948955 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.42923433874709976 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.4802784222737819 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5754060324825986 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4328383223462609 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.38895517990645573 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.39937008449735967 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.2853828306264501 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.41531322505800466 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.46867749419953597 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5568445475638051 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.2853828306264501 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.13843774168600154 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.09373549883990717 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0556844547563805 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.2853828306264501 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.41531322505800466 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.46867749419953597 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5568445475638051 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4098284836140229 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.36409144477589944 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.37437465138771003 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Fast-DDS summaries |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("juanlofer/bge-base-fastdds-summaries-20epochs-666seed") |
|
# Run inference |
|
sentences = [ |
|
'The transport layer provides communication services between DDS entities, using UDPv4, UDPv6, TCPv4, TCPv6, and SHM transports.', |
|
'* **TCPv4**: TCP communication over IPv4 (see TCP Transport).', |
|
'The following table shows the supported primitive types and their\ncorresponding "TypeKind". The "TypeKind" is used to query the\nDynamicTypeBuilderFactory for the specific primitive DynamicType.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.3341 | |
|
| cosine_accuracy@3 | 0.4455 | |
|
| cosine_accuracy@5 | 0.5035 | |
|
| cosine_accuracy@10 | 0.5661 | |
|
| cosine_precision@1 | 0.3341 | |
|
| cosine_precision@3 | 0.1485 | |
|
| cosine_precision@5 | 0.1007 | |
|
| cosine_precision@10 | 0.0566 | |
|
| cosine_recall@1 | 0.3341 | |
|
| cosine_recall@3 | 0.4455 | |
|
| cosine_recall@5 | 0.5035 | |
|
| cosine_recall@10 | 0.5661 | |
|
| cosine_ndcg@10 | 0.4437 | |
|
| cosine_mrr@10 | 0.4054 | |
|
| **cosine_map@100** | **0.416** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3364 | |
|
| cosine_accuracy@3 | 0.4478 | |
|
| cosine_accuracy@5 | 0.4965 | |
|
| cosine_accuracy@10 | 0.5777 | |
|
| cosine_precision@1 | 0.3364 | |
|
| cosine_precision@3 | 0.1493 | |
|
| cosine_precision@5 | 0.0993 | |
|
| cosine_precision@10 | 0.0578 | |
|
| cosine_recall@1 | 0.3364 | |
|
| cosine_recall@3 | 0.4478 | |
|
| cosine_recall@5 | 0.4965 | |
|
| cosine_recall@10 | 0.5777 | |
|
| cosine_ndcg@10 | 0.4463 | |
|
| cosine_mrr@10 | 0.4057 | |
|
| **cosine_map@100** | **0.4154** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3271 | |
|
| cosine_accuracy@3 | 0.4478 | |
|
| cosine_accuracy@5 | 0.4988 | |
|
| cosine_accuracy@10 | 0.5754 | |
|
| cosine_precision@1 | 0.3271 | |
|
| cosine_precision@3 | 0.1493 | |
|
| cosine_precision@5 | 0.0998 | |
|
| cosine_precision@10 | 0.0575 | |
|
| cosine_recall@1 | 0.3271 | |
|
| cosine_recall@3 | 0.4478 | |
|
| cosine_recall@5 | 0.4988 | |
|
| cosine_recall@10 | 0.5754 | |
|
| cosine_ndcg@10 | 0.4414 | |
|
| cosine_mrr@10 | 0.3997 | |
|
| **cosine_map@100** | **0.4105** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3155 | |
|
| cosine_accuracy@3 | 0.4292 | |
|
| cosine_accuracy@5 | 0.4803 | |
|
| cosine_accuracy@10 | 0.5754 | |
|
| cosine_precision@1 | 0.3155 | |
|
| cosine_precision@3 | 0.1431 | |
|
| cosine_precision@5 | 0.0961 | |
|
| cosine_precision@10 | 0.0575 | |
|
| cosine_recall@1 | 0.3155 | |
|
| cosine_recall@3 | 0.4292 | |
|
| cosine_recall@5 | 0.4803 | |
|
| cosine_recall@10 | 0.5754 | |
|
| cosine_ndcg@10 | 0.4328 | |
|
| cosine_mrr@10 | 0.389 | |
|
| **cosine_map@100** | **0.3994** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.2854 | |
|
| cosine_accuracy@3 | 0.4153 | |
|
| cosine_accuracy@5 | 0.4687 | |
|
| cosine_accuracy@10 | 0.5568 | |
|
| cosine_precision@1 | 0.2854 | |
|
| cosine_precision@3 | 0.1384 | |
|
| cosine_precision@5 | 0.0937 | |
|
| cosine_precision@10 | 0.0557 | |
|
| cosine_recall@1 | 0.2854 | |
|
| cosine_recall@3 | 0.4153 | |
|
| cosine_recall@5 | 0.4687 | |
|
| cosine_recall@10 | 0.5568 | |
|
| cosine_ndcg@10 | 0.4098 | |
|
| cosine_mrr@10 | 0.3641 | |
|
| **cosine_map@100** | **0.3744** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 20 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `tf32`: False |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 20 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:-----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.6584 | 10 | 5.9441 | - | - | - | - | - | |
|
| 0.9877 | 15 | - | 0.3686 | 0.3792 | 0.3819 | 0.3414 | 0.3795 | |
|
| 1.3128 | 20 | 4.7953 | - | - | - | - | - | |
|
| 1.9712 | 30 | 3.77 | 0.3854 | 0.3963 | 0.3962 | 0.3682 | 0.3995 | |
|
| 2.6255 | 40 | 2.9211 | - | - | - | - | - | |
|
| 2.9547 | 45 | - | 0.3866 | 0.3919 | 0.3958 | 0.3759 | 0.3963 | |
|
| 3.2798 | 50 | 2.4548 | - | - | - | - | - | |
|
| 3.9383 | 60 | 2.0513 | - | - | - | - | - | |
|
| 4.0041 | 61 | - | 0.3808 | 0.4018 | 0.3980 | 0.3647 | 0.3962 | |
|
| 4.5926 | 70 | 1.5898 | - | - | - | - | - | |
|
| 4.9877 | 76 | - | 0.3829 | 0.4029 | 0.4035 | 0.3625 | 0.4014 | |
|
| 5.2469 | 80 | 1.4677 | - | - | - | - | - | |
|
| 5.9053 | 90 | 1.1974 | - | - | - | - | - | |
|
| 5.9712 | 91 | - | 0.3918 | 0.4006 | 0.4041 | 0.3654 | 0.4033 | |
|
| 6.5597 | 100 | 0.9285 | - | - | - | - | - | |
|
| 6.9547 | 106 | - | 0.3914 | 0.4019 | 0.4033 | 0.3678 | 0.4014 | |
|
| 7.2140 | 110 | 0.9214 | - | - | - | - | - | |
|
| 7.8724 | 120 | 0.8141 | - | - | - | - | - | |
|
| 8.0041 | 122 | - | 0.3914 | 0.3993 | 0.4071 | 0.3670 | 0.4027 | |
|
| 8.5267 | 130 | 0.6706 | - | - | - | - | - | |
|
| 8.9877 | 137 | - | 0.3903 | 0.4033 | 0.4060 | 0.3721 | 0.4060 | |
|
| 9.1811 | 140 | 0.6388 | - | - | - | - | - | |
|
| 9.8395 | 150 | 0.5466 | - | - | - | - | - | |
|
| 9.9712 | 152 | - | 0.3915 | 0.4020 | 0.4079 | 0.3673 | 0.4046 | |
|
| 10.4938 | 160 | 0.466 | - | - | - | - | - | |
|
| 10.9547 | 167 | - | 0.3963 | 0.4069 | 0.4112 | 0.3697 | 0.4078 | |
|
| 11.1481 | 170 | 0.4709 | - | - | - | - | - | |
|
| 11.8066 | 180 | 0.437 | - | - | - | - | - | |
|
| 12.0041 | 183 | - | 0.4003 | 0.4051 | 0.4096 | 0.3701 | 0.4059 | |
|
| 12.4609 | 190 | 0.3678 | - | - | - | - | - | |
|
| 12.9877 | 198 | - | 0.3976 | 0.4075 | 0.4088 | 0.3713 | 0.4080 | |
|
| 13.1152 | 200 | 0.3944 | - | - | - | - | - | |
|
| 13.7737 | 210 | 0.361 | - | - | - | - | - | |
|
| 13.9712 | 213 | - | 0.3966 | 0.4091 | 0.4096 | 0.3724 | 0.4107 | |
|
| 14.4280 | 220 | 0.2977 | - | - | - | - | - | |
|
| 14.9547 | 228 | - | 0.3979 | 0.4102 | 0.4149 | 0.3744 | 0.4143 | |
|
| 15.0823 | 230 | 0.3306 | - | - | - | - | - | |
|
| 15.7407 | 240 | 0.3075 | - | - | - | - | - | |
|
| **16.0041** | **244** | **-** | **0.3991** | **0.4102** | **0.4156** | **0.3726** | **0.4148** | |
|
| 16.3951 | 250 | 0.2777 | - | - | - | - | - | |
|
| 16.9877 | 259 | - | 0.3990 | 0.4101 | 0.4154 | 0.3743 | 0.4167 | |
|
| 17.0494 | 260 | 0.3044 | - | - | - | - | - | |
|
| 17.7078 | 270 | 0.2885 | - | - | - | - | - | |
|
| 17.9712 | 274 | - | 0.3991 | 0.4099 | 0.4153 | 0.3746 | 0.4167 | |
|
| 18.3621 | 280 | 0.2862 | - | - | - | - | - | |
|
| 18.9547 | 289 | - | 0.3994 | 0.4105 | 0.4154 | 0.3743 | 0.4156 | |
|
| 19.0165 | 290 | 0.2974 | - | - | - | - | - | |
|
| 19.6749 | 300 | 0.2648 | 0.3994 | 0.4105 | 0.4154 | 0.3744 | 0.4160 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |