File size: 5,873 Bytes
c0bdb00
 
497f3e1
9c93d22
 
 
08cde5d
9c93d22
 
 
 
497f3e1
 
 
 
 
 
c0bdb00
 
9c93d22
 
c0bdb00
9c93d22
 
c0bdb00
9c93d22
 
 
08cde5d
9c93d22
 
 
 
08cde5d
 
9c93d22
 
 
 
08cde5d
9c93d22
 
 
08cde5d
9c93d22
08cde5d
a4a408b
 
08cde5d
 
 
 
 
 
 
 
 
 
 
 
9c93d22
 
 
 
 
 
 
 
a4a408b
1643cc0
9c93d22
 
 
 
 
 
 
 
 
 
 
 
 
2959352
9c93d22
 
 
08cde5d
9c93d22
08cde5d
9c93d22
08cde5d
9c93d22
08cde5d
a4a408b
 
 
9c93d22
 
 
 
 
 
 
 
 
1643cc0
9c93d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643cc0
9c93d22
 
 
 
 
 
 
08cde5d
a4a408b
9c93d22
 
 
 
 
a4a408b
 
 
 
2959352
 
 
1643cc0
 
 
c0bdb00
 
 
 
9c93d22
 
 
 
497f3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
base_model: EleutherAI/pythia-160m-deduped
library_name: transformers
license: apache-2.0
tags:
- axolotl
- relora
- generated_from_trainer
model-index:
- name: pythia-160m-storytelling
  results: []
datasets:
- jtatman/storywriting_combined_instruct
metrics:
- accuracy
- bleu
- rouge
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: EleutherAI/pythia-160m-deduped
load_in_8bit: 
datasets:
  - path: jtatman/storywriting_combined_instruct
    type: alpaca
dataset_prepared_path: ds-storytelling
chat_template: inst
val_set_size: 0.01
adapter: lora
lora_model_dir: 
sequence_len: 2048
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
  - query_key_value
lora_target_linear: true
lora_fan_in_fan_out: true  # pythia/GPTNeoX lora specific
lora_modules_to_save:
  - embed_in
  - embed_out
  - lm_head
lora_on_cpu: false
# ReLoRA configuration
# # Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
# relora_steps: # Number of steps per ReLoRA restart
# relora_warmup_steps: # Number of per-restart warmup steps
# relora_anneal_steps: # Number of anneal steps for each relora cycle
# relora_prune_ratio: # threshold for optimizer magnitude when pruning
# relora_cpu_offload:  # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
relora_steps: 200
relora_warmup_steps: 10
relora_cpu_offload: false
wandb_project: pythia
wandb_entity:
wandb_watch:
wandb_name: pythia-160m-storytelling
wandb_log_model:
output_dir: ./outputs/lora-alpaca-pythia-160m-storytelling
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
learning_rate: 0.004
lr_scheduler: cosine_with_restarts
#cosine_min_lr_ratio: 0.1
train_on_inputs: false
group_by_length: false
#bf16: auto
#fp16: true
#tf32: false
float16: true
flash_attn: 
xformers_attention: true
optimizer: paged_adamw_8bit
gpu_memory_limit: 8GiB
hub_model_id: jtatman/pythia-160m-storytelling 
early_stopping_patience: 3
#resume_from_checkpoint: outputs/lora-alpaca-pythia-125m/checkpoint-51040
auto_resume_from_checkpoints: true
local_rank:
weight_decay: 0.0
#evals_per_epoch: 4
eval_steps: 200
logging_steps: 1
save_steps: 200
save_total_limit: 5
warmup_steps: 100
tokens:
  - "[INST]"
  - "[/INST]"

```

</details><br>

# pythia-160m-storytelling

This model is a fine-tuned version of [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0097

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.004
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.5185        | 0.0012 | 1    | 4.8238          |
| 4.2012        | 0.2348 | 200  | 4.1556          |
| 4.4185        | 0.4696 | 400  | 4.8159          |
| 5.0973        | 0.7043 | 600  | 5.0363          |
| 8.1159        | 0.9391 | 800  | 8.4966          |
| 6.7656        | 1.1739 | 1000 | 7.1575          |
| 7.0548        | 1.4087 | 1200 | 7.3539          |
| 5.9982        | 1.6445 | 1400 | 5.9954          |
| 5.7662        | 1.8792 | 1600 | 6.0222          |
| 4.8094        | 2.1140 | 1800 | 5.0097          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1

### Metrics

    "Open LLM Leaderboard": {
      "exact_match,flexible-extract": 0.022,
      "exact_match_stderr,flexible-extract": 0.006566447781940106,
      "acc_norm,none": 0.318,
      "acc_norm_stderr,none": 0.014487919091408506,
      "acc,none": 0.2664044125478186,
      "acc_stderr,none": 0.003623534644130716,
      "bleu_diff,none": -0.6500479549286462,
      "bleu_diff_stderr,none": 0.6420841882903697,
      "rougeL_diff,none": -0.7765084899781842,
      "rougeL_diff_stderr,none": 1.0033586571635116,
      "exact_match,strict-match": 0.006,
      "exact_match_stderr,strict-match": 0.003457152557758373,
      "rouge2_acc,none": 0.192,
      "rouge2_acc_stderr,none": 0.017632180454360994,
      "rouge1_acc,none": 0.37,
      "rouge1_acc_stderr,none": 0.02161328916516578,
      "bleu_acc,none": 0.436,
      "bleu_acc_stderr,none": 0.0221989546414768,
      "rouge1_diff,none": -1.5563905118333812,
      "rouge1_diff_stderr,none": 1.022327995054994,
      "rouge2_diff,none": -3.3177627227020277,
      "rouge2_diff_stderr,none": 0.9477297777821475,
      "bleu_max,none": 15.229235419512532,
      "bleu_max_stderr,none": 0.6713582602539528,
      "rouge2_max,none": 16.487324929036955,
      "rouge2_max_stderr,none": 1.0171593586088354,
      "rouge1_max,none": 36.3549677399668,
      "rouge1_max_stderr,none": 0.9461627463383844,
      "rougeL_max,none": 33.87976960164143,
      "rougeL_max_stderr,none": 0.9366539036852334,
      "rougeL_acc,none": 0.386,
      "rougeL_acc_stderr,none": 0.021793529219281158,
      "alias": "Open LLM Leaderboard"
    },