File size: 5,873 Bytes
c0bdb00 497f3e1 9c93d22 08cde5d 9c93d22 497f3e1 c0bdb00 9c93d22 c0bdb00 9c93d22 c0bdb00 9c93d22 08cde5d 9c93d22 08cde5d 9c93d22 08cde5d 9c93d22 08cde5d 9c93d22 08cde5d a4a408b 08cde5d 9c93d22 a4a408b 1643cc0 9c93d22 2959352 9c93d22 08cde5d 9c93d22 08cde5d 9c93d22 08cde5d 9c93d22 08cde5d a4a408b 9c93d22 1643cc0 9c93d22 1643cc0 9c93d22 08cde5d a4a408b 9c93d22 a4a408b 2959352 1643cc0 c0bdb00 9c93d22 497f3e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
base_model: EleutherAI/pythia-160m-deduped
library_name: transformers
license: apache-2.0
tags:
- axolotl
- relora
- generated_from_trainer
model-index:
- name: pythia-160m-storytelling
results: []
datasets:
- jtatman/storywriting_combined_instruct
metrics:
- accuracy
- bleu
- rouge
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: EleutherAI/pythia-160m-deduped
load_in_8bit:
datasets:
- path: jtatman/storywriting_combined_instruct
type: alpaca
dataset_prepared_path: ds-storytelling
chat_template: inst
val_set_size: 0.01
adapter: lora
lora_model_dir:
sequence_len: 2048
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- query_key_value
lora_target_linear: true
lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific
lora_modules_to_save:
- embed_in
- embed_out
- lm_head
lora_on_cpu: false
# ReLoRA configuration
# # Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
# relora_steps: # Number of steps per ReLoRA restart
# relora_warmup_steps: # Number of per-restart warmup steps
# relora_anneal_steps: # Number of anneal steps for each relora cycle
# relora_prune_ratio: # threshold for optimizer magnitude when pruning
# relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
relora_steps: 200
relora_warmup_steps: 10
relora_cpu_offload: false
wandb_project: pythia
wandb_entity:
wandb_watch:
wandb_name: pythia-160m-storytelling
wandb_log_model:
output_dir: ./outputs/lora-alpaca-pythia-160m-storytelling
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
learning_rate: 0.004
lr_scheduler: cosine_with_restarts
#cosine_min_lr_ratio: 0.1
train_on_inputs: false
group_by_length: false
#bf16: auto
#fp16: true
#tf32: false
float16: true
flash_attn:
xformers_attention: true
optimizer: paged_adamw_8bit
gpu_memory_limit: 8GiB
hub_model_id: jtatman/pythia-160m-storytelling
early_stopping_patience: 3
#resume_from_checkpoint: outputs/lora-alpaca-pythia-125m/checkpoint-51040
auto_resume_from_checkpoints: true
local_rank:
weight_decay: 0.0
#evals_per_epoch: 4
eval_steps: 200
logging_steps: 1
save_steps: 200
save_total_limit: 5
warmup_steps: 100
tokens:
- "[INST]"
- "[/INST]"
```
</details><br>
# pythia-160m-storytelling
This model is a fine-tuned version of [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.004
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.5185 | 0.0012 | 1 | 4.8238 |
| 4.2012 | 0.2348 | 200 | 4.1556 |
| 4.4185 | 0.4696 | 400 | 4.8159 |
| 5.0973 | 0.7043 | 600 | 5.0363 |
| 8.1159 | 0.9391 | 800 | 8.4966 |
| 6.7656 | 1.1739 | 1000 | 7.1575 |
| 7.0548 | 1.4087 | 1200 | 7.3539 |
| 5.9982 | 1.6445 | 1400 | 5.9954 |
| 5.7662 | 1.8792 | 1600 | 6.0222 |
| 4.8094 | 2.1140 | 1800 | 5.0097 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
### Metrics
"Open LLM Leaderboard": {
"exact_match,flexible-extract": 0.022,
"exact_match_stderr,flexible-extract": 0.006566447781940106,
"acc_norm,none": 0.318,
"acc_norm_stderr,none": 0.014487919091408506,
"acc,none": 0.2664044125478186,
"acc_stderr,none": 0.003623534644130716,
"bleu_diff,none": -0.6500479549286462,
"bleu_diff_stderr,none": 0.6420841882903697,
"rougeL_diff,none": -0.7765084899781842,
"rougeL_diff_stderr,none": 1.0033586571635116,
"exact_match,strict-match": 0.006,
"exact_match_stderr,strict-match": 0.003457152557758373,
"rouge2_acc,none": 0.192,
"rouge2_acc_stderr,none": 0.017632180454360994,
"rouge1_acc,none": 0.37,
"rouge1_acc_stderr,none": 0.02161328916516578,
"bleu_acc,none": 0.436,
"bleu_acc_stderr,none": 0.0221989546414768,
"rouge1_diff,none": -1.5563905118333812,
"rouge1_diff_stderr,none": 1.022327995054994,
"rouge2_diff,none": -3.3177627227020277,
"rouge2_diff_stderr,none": 0.9477297777821475,
"bleu_max,none": 15.229235419512532,
"bleu_max_stderr,none": 0.6713582602539528,
"rouge2_max,none": 16.487324929036955,
"rouge2_max_stderr,none": 1.0171593586088354,
"rouge1_max,none": 36.3549677399668,
"rouge1_max_stderr,none": 0.9461627463383844,
"rougeL_max,none": 33.87976960164143,
"rougeL_max_stderr,none": 0.9366539036852334,
"rougeL_acc,none": 0.386,
"rougeL_acc_stderr,none": 0.021793529219281158,
"alias": "Open LLM Leaderboard"
}, |