Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: EleutherAI/pythia-160m-deduped
load_in_8bit: 
datasets:
  - path: jtatman/storywriting_combined_instruct
    type: alpaca
dataset_prepared_path: ds-storytelling
chat_template: inst
val_set_size: 0.01
adapter: lora
lora_model_dir: 
sequence_len: 2048
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
  - query_key_value
lora_target_linear: true
lora_fan_in_fan_out: true  # pythia/GPTNeoX lora specific
lora_modules_to_save:
  - embed_in
  - embed_out
  - lm_head
lora_on_cpu: false
# ReLoRA configuration
# # Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
# relora_steps: # Number of steps per ReLoRA restart
# relora_warmup_steps: # Number of per-restart warmup steps
# relora_anneal_steps: # Number of anneal steps for each relora cycle
# relora_prune_ratio: # threshold for optimizer magnitude when pruning
# relora_cpu_offload:  # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
relora_steps: 200
relora_warmup_steps: 10
relora_cpu_offload: false
wandb_project: pythia
wandb_entity:
wandb_watch:
wandb_name: pythia-160m-storytelling
wandb_log_model:
output_dir: ./outputs/lora-alpaca-pythia-160m-storytelling
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
learning_rate: 0.004
lr_scheduler: cosine_with_restarts
#cosine_min_lr_ratio: 0.1
train_on_inputs: false
group_by_length: false
#bf16: auto
#fp16: true
#tf32: false
float16: true
flash_attn: 
xformers_attention: true
optimizer: paged_adamw_8bit
gpu_memory_limit: 8GiB
hub_model_id: jtatman/pythia-160m-storytelling 
early_stopping_patience: 3
#resume_from_checkpoint: outputs/lora-alpaca-pythia-125m/checkpoint-51040
auto_resume_from_checkpoints: true
local_rank:
weight_decay: 0.0
#evals_per_epoch: 4
eval_steps: 200
logging_steps: 1
save_steps: 200
save_total_limit: 5
warmup_steps: 100
tokens:
  - "[INST]"
  - "[/INST]"

pythia-160m-storytelling

This model is a fine-tuned version of EleutherAI/pythia-160m-deduped on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.0097

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.004
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
5.5185 0.0012 1 4.8238
4.2012 0.2348 200 4.1556
4.4185 0.4696 400 4.8159
5.0973 0.7043 600 5.0363
8.1159 0.9391 800 8.4966
6.7656 1.1739 1000 7.1575
7.0548 1.4087 1200 7.3539
5.9982 1.6445 1400 5.9954
5.7662 1.8792 1600 6.0222
4.8094 2.1140 1800 5.0097

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Metrics

"Open LLM Leaderboard": {
  "exact_match,flexible-extract": 0.022,
  "exact_match_stderr,flexible-extract": 0.006566447781940106,
  "acc_norm,none": 0.318,
  "acc_norm_stderr,none": 0.014487919091408506,
  "acc,none": 0.2664044125478186,
  "acc_stderr,none": 0.003623534644130716,
  "bleu_diff,none": -0.6500479549286462,
  "bleu_diff_stderr,none": 0.6420841882903697,
  "rougeL_diff,none": -0.7765084899781842,
  "rougeL_diff_stderr,none": 1.0033586571635116,
  "exact_match,strict-match": 0.006,
  "exact_match_stderr,strict-match": 0.003457152557758373,
  "rouge2_acc,none": 0.192,
  "rouge2_acc_stderr,none": 0.017632180454360994,
  "rouge1_acc,none": 0.37,
  "rouge1_acc_stderr,none": 0.02161328916516578,
  "bleu_acc,none": 0.436,
  "bleu_acc_stderr,none": 0.0221989546414768,
  "rouge1_diff,none": -1.5563905118333812,
  "rouge1_diff_stderr,none": 1.022327995054994,
  "rouge2_diff,none": -3.3177627227020277,
  "rouge2_diff_stderr,none": 0.9477297777821475,
  "bleu_max,none": 15.229235419512532,
  "bleu_max_stderr,none": 0.6713582602539528,
  "rouge2_max,none": 16.487324929036955,
  "rouge2_max_stderr,none": 1.0171593586088354,
  "rouge1_max,none": 36.3549677399668,
  "rouge1_max_stderr,none": 0.9461627463383844,
  "rougeL_max,none": 33.87976960164143,
  "rougeL_max_stderr,none": 0.9366539036852334,
  "rougeL_acc,none": 0.386,
  "rougeL_acc_stderr,none": 0.021793529219281158,
  "alias": "Open LLM Leaderboard"
},
Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jtatman/pythia-160m-storytelling

Finetuned
(108)
this model

Dataset used to train jtatman/pythia-160m-storytelling