deberta-myers-briggs-classifier

This model is a fine-tuned version of microsoft/deberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
1.6415 1.0 868 1.7265
1.6881 2.0 1736 1.3475
1.5645 3.0 2604 1.0214
1.0915 4.0 3472 0.7177
0.6687 5.0 4340 0.4303
0.4507 6.0 5208 0.3196
0.5139 7.0 6076 0.1659
0.5381 8.0 6944 0.1550
0.2482 9.0 7812 0.0851
0.0942 10.0 8680 0.0824
0.1959 11.0 9548 0.0536
0.0547 12.0 10416 0.0248
0.0049 13.0 11284 0.0127
0.0451 14.0 12152 0.0096
0.0001 15.0 13020 0.0091
0.0 16.0 13888 0.0085
0.0 17.0 14756 0.0000
0.0 18.0 15624 0.0000
0.0 19.0 16492 0.0000
0.0 20.0 17360 0.0000

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
21
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jtatman/deberta-myers-briggs-classifier

Finetuned
(51)
this model