jsl5710's picture
jslai/MBERT_uncased_GeneralizedCrossEntropy_full_ft_word_order_head_to_tail_20241212-040432
8d172a4 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: MBERT_uncased_GeneralizedCrossEntropy_full_ft
    results: []

MBERT_uncased_GeneralizedCrossEntropy_full_ft

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.802
  • F1: 0.8584
  • Precision: 0.8310
  • Recall: 0.8876
  • Roc Auc: 0.7555
  • Loss: 0.2729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Roc Auc Validation Loss
No log 0.992 62 0.77 0.8487 0.7642 0.9541 0.6700 0.3336
0.3578 2.0 125 0.805 0.8567 0.8511 0.8624 0.7738 0.2695
0.3578 2.976 186 0.802 0.8584 0.8310 0.8876 0.7555 0.2729

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3