|
--- |
|
language: |
|
- ko |
|
license: apache-2.0 |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
base_model: openai/whisper-small |
|
datasets: |
|
- korean_samll_dataset13 |
|
model-index: |
|
- name: korean-small_t36 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# korean-small_t36 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the korean_samll_dataset13 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2805 |
|
- Cer: 10.8675 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.3938 | 0.11 | 200 | 0.3982 | 14.8401 | |
|
| 0.3479 | 0.21 | 400 | 0.3561 | 12.9310 | |
|
| 0.3206 | 0.32 | 600 | 0.3334 | 12.3517 | |
|
| 0.3094 | 0.42 | 800 | 0.3222 | 12.0216 | |
|
| 0.3088 | 0.53 | 1000 | 0.3120 | 11.6705 | |
|
| 0.2792 | 0.63 | 1200 | 0.3058 | 11.9337 | |
|
| 0.2877 | 0.74 | 1400 | 0.2988 | 11.9042 | |
|
| 0.2722 | 0.84 | 1600 | 0.2913 | 11.6501 | |
|
| 0.285 | 0.95 | 1800 | 0.2881 | 11.5122 | |
|
| 0.1822 | 1.05 | 2000 | 0.2870 | 12.0730 | |
|
| 0.1829 | 1.16 | 2200 | 0.2861 | 11.0178 | |
|
| 0.1843 | 1.26 | 2400 | 0.2850 | 11.4228 | |
|
| 0.1869 | 1.37 | 2600 | 0.2844 | 11.1706 | |
|
| 0.1886 | 1.47 | 2800 | 0.2826 | 11.0313 | |
|
| 0.1816 | 1.58 | 3000 | 0.2805 | 10.8675 | |
|
| 0.1828 | 1.69 | 3200 | 0.2792 | 11.0108 | |
|
| 0.1844 | 1.79 | 3400 | 0.2774 | 10.9839 | |
|
| 0.1847 | 1.9 | 3600 | 0.2747 | 11.2211 | |
|
| 0.1759 | 2.0 | 3800 | 0.2742 | 11.2830 | |
|
| 0.112 | 2.11 | 4000 | 0.2814 | 11.5537 | |
|
| 0.1185 | 2.21 | 4200 | 0.2825 | 10.9629 | |
|
| 0.1142 | 2.32 | 4400 | 0.2812 | 11.4553 | |
|
| 0.1079 | 2.42 | 4600 | 0.2812 | 11.3894 | |
|
| 0.1139 | 2.53 | 4800 | 0.2811 | 11.0738 | |
|
| 0.1085 | 2.63 | 5000 | 0.2811 | 11.3989 | |
|
| 0.1096 | 2.74 | 5200 | 0.2807 | 11.0138 | |
|
| 0.1087 | 2.84 | 5400 | 0.2804 | 11.1387 | |
|
| 0.1103 | 2.95 | 5600 | 0.2801 | 11.1097 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|