|
--- |
|
license: apache-2.0 |
|
tags: |
|
- text-classification |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: jrtec-distilroberta-base-mrpc-glue-omar-espejel |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: datasetX |
|
type: glue |
|
config: mrpc |
|
split: train |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8161764705882353 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8747913188647747 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# jrtec-distilroberta-base-mrpc-glue-omar-espejel |
|
|
|
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4901 |
|
- Accuracy: 0.8162 |
|
- F1: 0.8748 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.4845 | 1.09 | 500 | 0.4901 | 0.8162 | 0.8748 | |
|
| 0.3706 | 2.18 | 1000 | 0.6421 | 0.8162 | 0.8691 | |
|
| 0.2003 | 3.27 | 1500 | 0.9711 | 0.8162 | 0.8760 | |
|
| 0.1281 | 4.36 | 2000 | 0.8224 | 0.8480 | 0.8893 | |
|
| 0.0717 | 5.45 | 2500 | 1.1803 | 0.8113 | 0.8511 | |
|
| 0.0344 | 6.54 | 3000 | 1.1759 | 0.8480 | 0.8935 | |
|
| 0.0277 | 7.63 | 3500 | 1.2140 | 0.8456 | 0.8927 | |
|
| 0.0212 | 8.71 | 4000 | 1.0895 | 0.8554 | 0.8974 | |
|
| 0.0071 | 9.8 | 4500 | 1.1849 | 0.8554 | 0.8991 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|