|
--- |
|
license: llama3 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
model-index: |
|
- name: llama-3-8b-claudstruct-v3 |
|
results: [] |
|
datasets: |
|
- Norquinal/claude_multi_instruct_30k |
|
language: |
|
- en |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
chat_template: llama3 |
|
datasets: |
|
- path: Norquinal/claude_multi_instruct_30k |
|
type: alpaca |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.05 |
|
output_dir: ./outputs/llama-3-8b-claudstruct-v3/ |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 512 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 8 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 8 |
|
num_epochs: 2 |
|
optimizer: adamw_torch |
|
lr_scheduler: cosine |
|
learning_rate: 0.00001 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
- full_shard |
|
- auto_wrap |
|
fsdp_config: |
|
fsdp_limit_all_gathers: true |
|
fsdp_sync_module_states: true |
|
fsdp_offload_params: true |
|
fsdp_use_orig_params: false |
|
fsdp_cpu_ram_efficient_loading: true |
|
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP |
|
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer |
|
fsdp_state_dict_type: FULL_STATE_DICT |
|
fsdp_sharding_strategy: FULL_SHARD |
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# llama-3-8b-claudstruct-v3 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [Norquinal/claude_multi_instruct_30k](https://huggingface.co/datasets/Norquinal/claude_multi_instruct_30k) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6226 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.2209 | 0.0007 | 1 | 2.0399 | |
|
| 1.7842 | 0.2502 | 341 | 1.6960 | |
|
| 1.6914 | 0.5004 | 682 | 1.6590 | |
|
| 1.6757 | 0.7506 | 1023 | 1.6414 | |
|
| 1.5182 | 1.0007 | 1364 | 1.6319 | |
|
| 1.8421 | 1.2509 | 1705 | 1.6264 | |
|
| 1.7271 | 1.5011 | 2046 | 1.6237 | |
|
| 1.4817 | 1.7513 | 2387 | 1.6226 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |