metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: rh_qa_model
results: []
rh_qa_model
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4148
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 14 | 3.1715 |
No log | 2.0 | 28 | 2.2625 |
No log | 3.0 | 42 | 1.8385 |
No log | 4.0 | 56 | 1.5586 |
No log | 5.0 | 70 | 1.3127 |
No log | 6.0 | 84 | 1.1556 |
No log | 7.0 | 98 | 1.0699 |
No log | 8.0 | 112 | 0.8843 |
No log | 9.0 | 126 | 0.7782 |
No log | 10.0 | 140 | 0.8645 |
No log | 11.0 | 154 | 0.6969 |
No log | 12.0 | 168 | 0.7130 |
No log | 13.0 | 182 | 0.7346 |
No log | 14.0 | 196 | 0.6394 |
No log | 15.0 | 210 | 0.6501 |
No log | 16.0 | 224 | 0.5198 |
No log | 17.0 | 238 | 0.6806 |
No log | 18.0 | 252 | 0.5010 |
No log | 19.0 | 266 | 0.4730 |
No log | 20.0 | 280 | 0.4384 |
No log | 21.0 | 294 | 0.5072 |
No log | 22.0 | 308 | 0.7052 |
No log | 23.0 | 322 | 0.5192 |
No log | 24.0 | 336 | 0.5131 |
No log | 25.0 | 350 | 0.4587 |
No log | 26.0 | 364 | 0.5063 |
No log | 27.0 | 378 | 0.5847 |
No log | 28.0 | 392 | 0.5687 |
No log | 29.0 | 406 | 0.4751 |
No log | 30.0 | 420 | 0.5268 |
No log | 31.0 | 434 | 0.4624 |
No log | 32.0 | 448 | 0.6690 |
No log | 33.0 | 462 | 0.5542 |
No log | 34.0 | 476 | 0.5325 |
No log | 35.0 | 490 | 0.4658 |
0.6171 | 36.0 | 504 | 0.4740 |
0.6171 | 37.0 | 518 | 0.4895 |
0.6171 | 38.0 | 532 | 0.4703 |
0.6171 | 39.0 | 546 | 0.5297 |
0.6171 | 40.0 | 560 | 0.4644 |
0.6171 | 41.0 | 574 | 0.4785 |
0.6171 | 42.0 | 588 | 0.4762 |
0.6171 | 43.0 | 602 | 0.4621 |
0.6171 | 44.0 | 616 | 0.5370 |
0.6171 | 45.0 | 630 | 0.5178 |
0.6171 | 46.0 | 644 | 0.4732 |
0.6171 | 47.0 | 658 | 0.4982 |
0.6171 | 48.0 | 672 | 0.4894 |
0.6171 | 49.0 | 686 | 0.4453 |
0.6171 | 50.0 | 700 | 0.5137 |
0.6171 | 51.0 | 714 | 0.4349 |
0.6171 | 52.0 | 728 | 0.4134 |
0.6171 | 53.0 | 742 | 0.4375 |
0.6171 | 54.0 | 756 | 0.4453 |
0.6171 | 55.0 | 770 | 0.4425 |
0.6171 | 56.0 | 784 | 0.3920 |
0.6171 | 57.0 | 798 | 0.3902 |
0.6171 | 58.0 | 812 | 0.4387 |
0.6171 | 59.0 | 826 | 0.4759 |
0.6171 | 60.0 | 840 | 0.4824 |
0.6171 | 61.0 | 854 | 0.4481 |
0.6171 | 62.0 | 868 | 0.4206 |
0.6171 | 63.0 | 882 | 0.4524 |
0.6171 | 64.0 | 896 | 0.3694 |
0.6171 | 65.0 | 910 | 0.4345 |
0.6171 | 66.0 | 924 | 0.4957 |
0.6171 | 67.0 | 938 | 0.4407 |
0.6171 | 68.0 | 952 | 0.4615 |
0.6171 | 69.0 | 966 | 0.4300 |
0.6171 | 70.0 | 980 | 0.4805 |
0.6171 | 71.0 | 994 | 0.4524 |
0.2178 | 72.0 | 1008 | 0.4411 |
0.2178 | 73.0 | 1022 | 0.3767 |
0.2178 | 74.0 | 1036 | 0.4178 |
0.2178 | 75.0 | 1050 | 0.4271 |
0.2178 | 76.0 | 1064 | 0.4397 |
0.2178 | 77.0 | 1078 | 0.4461 |
0.2178 | 78.0 | 1092 | 0.4313 |
0.2178 | 79.0 | 1106 | 0.4162 |
0.2178 | 80.0 | 1120 | 0.4404 |
0.2178 | 81.0 | 1134 | 0.4549 |
0.2178 | 82.0 | 1148 | 0.4421 |
0.2178 | 83.0 | 1162 | 0.4219 |
0.2178 | 84.0 | 1176 | 0.4328 |
0.2178 | 85.0 | 1190 | 0.4168 |
0.2178 | 86.0 | 1204 | 0.4724 |
0.2178 | 87.0 | 1218 | 0.4334 |
0.2178 | 88.0 | 1232 | 0.4430 |
0.2178 | 89.0 | 1246 | 0.4263 |
0.2178 | 90.0 | 1260 | 0.4126 |
0.2178 | 91.0 | 1274 | 0.4021 |
0.2178 | 92.0 | 1288 | 0.4027 |
0.2178 | 93.0 | 1302 | 0.4110 |
0.2178 | 94.0 | 1316 | 0.4199 |
0.2178 | 95.0 | 1330 | 0.4182 |
0.2178 | 96.0 | 1344 | 0.4171 |
0.2178 | 97.0 | 1358 | 0.4198 |
0.2178 | 98.0 | 1372 | 0.4200 |
0.2178 | 99.0 | 1386 | 0.4157 |
0.2178 | 100.0 | 1400 | 0.4148 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1