|
--- |
|
language: |
|
- en |
|
- es |
|
base_model: |
|
- jameslahm/yolov10s |
|
tags: |
|
- GAMES |
|
- COUNTER STRIKE2 |
|
- CS2 |
|
- VIDEOGAMES |
|
- CS |
|
- OBJECT DETECTION |
|
- YOLO |
|
- YOLOV10 |
|
- YOLOV10S |
|
pipeline_tag: object-detection |
|
--- |
|
# Counter Strike 2 players detector |
|
|
|
#### Supported Labels |
|
['CT', 'CT_head', 'T', 'T_head'] |
|
|
|
#### ALL my models YOLOv10 & YOLOv9 |
|
- Yolov10s: https://huggingface.co/jparedesDS/cs2-yolov10s |
|
- Yolov9c: https://huggingface.co/jparedesDS/cs2-yolov9c |
|
- Yolov10m: https://huggingface.co/jparedesDS/cs2-yolov10m |
|
- Yolov10b: https://huggingface.co/jparedesDS/cs2-yolov10b |
|
|
|
#### How to use |
|
``` |
|
from ultralytics import YOLO |
|
|
|
# Load a pretrained YOLO model |
|
model = YOLO(r'weights\yolov10s_cs2.pt') |
|
|
|
# Run inference on 'image.png' with arguments |
|
model.predict( |
|
'image.png', |
|
save=True, |
|
device=0 |
|
) |
|
``` |
|
|
|
#### Labels |
|
![labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/KRuK-Y9uEP2Hwat5ojD1E.jpeg) |
|
#### Results |
|
![results.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/-DOb5ZmGoI_vXs7zgtFMP.png) |
|
#### Predict |
|
![train_batch0.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/Ie7m1EQosL87TbN_UoS-0.jpeg) |
|
![train_batch1.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/Lr3solcPWqHrdMvQ0hBX9.jpeg) |
|
``` |
|
YOLOv10s summary (fused): 293 layers, 8,038,056 parameters, 0 gradients, 24.5 GFLOPs |
|
Class Images Instances Box(P R mAP50 mAP50-95): 100%|ββββββββββ| 5/5 [00:03<00:00, 1.41it/s] |
|
all 160 372 0.958 0.94 0.979 0.772 |
|
ct_body 88 110 0.964 0.964 0.988 0.861 |
|
ct_head 82 104 0.946 0.847 0.953 0.634 |
|
t_body 70 84 0.986 0.976 0.99 0.866 |
|
t_head 62 74 0.938 0.973 0.984 0.728 |
|
``` |
|
|
|
#### Others models Counter Strike 2 YOLOv10m Object Detection |
|
https://huggingface.co/ChitoParedes/cs2-yolov10m |