test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6568
  • Precision: 0.8876
  • Recall: 0.9066
  • F1: 0.8970
  • Accuracy: 0.8601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.33 100 0.6157 0.7621 0.8400 0.7991 0.8051
No log 2.67 200 0.4834 0.7915 0.8902 0.8380 0.8334
No log 4.0 300 0.4929 0.8484 0.8922 0.8697 0.8493
No log 5.33 400 0.5191 0.8746 0.9006 0.8874 0.8556
0.5561 6.67 500 0.5553 0.8671 0.9041 0.8852 0.8487
0.5561 8.0 600 0.5766 0.8723 0.9091 0.8903 0.8388
0.5561 9.33 700 0.6486 0.8816 0.8917 0.8866 0.8511
0.5561 10.67 800 0.6188 0.8861 0.9086 0.8972 0.8608
0.5561 12.0 900 0.6317 0.8890 0.9071 0.8980 0.8630
0.1298 13.33 1000 0.6568 0.8876 0.9066 0.8970 0.8601

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cpu
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for josephloh/test

Finetuned
(217)
this model

Evaluation results