update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: dit-tiny_tobacco3482_kd_MSE
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# dit-tiny_tobacco3482_kd_MSE
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 6.8328
|
19 |
+
- Accuracy: 0.19
|
20 |
+
- Brier Loss: 0.8942
|
21 |
+
- Nll: 7.0296
|
22 |
+
- F1 Micro: 0.19
|
23 |
+
- F1 Macro: 0.0703
|
24 |
+
- Ece: 0.2429
|
25 |
+
- Aurc: 0.8146
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 16
|
49 |
+
- total_train_batch_size: 256
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 25
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:-------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| No log | 0.96 | 3 | 7.1188 | 0.145 | 0.9003 | 10.1627 | 0.145 | 0.0253 | 0.2218 | 0.8463 |
|
60 |
+
| No log | 1.96 | 6 | 7.0608 | 0.145 | 0.8969 | 9.8809 | 0.145 | 0.0253 | 0.2197 | 0.8454 |
|
61 |
+
| No log | 2.96 | 9 | 6.9777 | 0.145 | 0.8929 | 8.9712 | 0.145 | 0.0442 | 0.2065 | 0.7921 |
|
62 |
+
| No log | 3.96 | 12 | 6.9144 | 0.17 | 0.8908 | 4.9924 | 0.17 | 0.0413 | 0.2325 | 0.7807 |
|
63 |
+
| No log | 4.96 | 15 | 6.8797 | 0.145 | 0.8912 | 6.8983 | 0.145 | 0.0399 | 0.2089 | 0.7932 |
|
64 |
+
| No log | 5.96 | 18 | 6.8636 | 0.085 | 0.8926 | 6.9917 | 0.085 | 0.0299 | 0.1822 | 0.8755 |
|
65 |
+
| No log | 6.96 | 21 | 6.8545 | 0.075 | 0.8946 | 7.0604 | 0.075 | 0.0307 | 0.1849 | 0.8758 |
|
66 |
+
| No log | 7.96 | 24 | 6.8486 | 0.06 | 0.8958 | 7.1035 | 0.06 | 0.0230 | 0.1801 | 0.8891 |
|
67 |
+
| No log | 8.96 | 27 | 6.8455 | 0.165 | 0.8967 | 7.1315 | 0.165 | 0.0604 | 0.2414 | 0.8438 |
|
68 |
+
| No log | 9.96 | 30 | 6.8450 | 0.185 | 0.8973 | 7.1546 | 0.185 | 0.0468 | 0.2477 | 0.8436 |
|
69 |
+
| No log | 10.96 | 33 | 6.8438 | 0.18 | 0.8969 | 7.1569 | 0.18 | 0.0308 | 0.2406 | 0.8504 |
|
70 |
+
| No log | 11.96 | 36 | 6.8414 | 0.18 | 0.8962 | 7.1492 | 0.18 | 0.0306 | 0.2510 | 0.8501 |
|
71 |
+
| No log | 12.96 | 39 | 6.8390 | 0.18 | 0.8958 | 7.1455 | 0.18 | 0.0306 | 0.2374 | 0.8494 |
|
72 |
+
| No log | 13.96 | 42 | 6.8365 | 0.18 | 0.8950 | 7.0793 | 0.18 | 0.0306 | 0.2436 | 0.8488 |
|
73 |
+
| No log | 14.96 | 45 | 6.8349 | 0.18 | 0.8944 | 7.0591 | 0.18 | 0.0306 | 0.2369 | 0.8486 |
|
74 |
+
| No log | 15.96 | 48 | 6.8338 | 0.18 | 0.8942 | 7.0493 | 0.18 | 0.0306 | 0.2396 | 0.8482 |
|
75 |
+
| No log | 16.96 | 51 | 6.8335 | 0.18 | 0.8940 | 7.0429 | 0.18 | 0.0309 | 0.2390 | 0.8486 |
|
76 |
+
| No log | 17.96 | 54 | 6.8341 | 0.18 | 0.8943 | 7.0410 | 0.18 | 0.0314 | 0.2351 | 0.8514 |
|
77 |
+
| No log | 18.96 | 57 | 6.8338 | 0.19 | 0.8943 | 7.0391 | 0.19 | 0.0495 | 0.2480 | 0.8471 |
|
78 |
+
| No log | 19.96 | 60 | 6.8335 | 0.205 | 0.8943 | 7.0342 | 0.205 | 0.0722 | 0.2562 | 0.8204 |
|
79 |
+
| No log | 20.96 | 63 | 6.8334 | 0.2 | 0.8942 | 7.0308 | 0.2000 | 0.0683 | 0.2541 | 0.8199 |
|
80 |
+
| No log | 21.96 | 66 | 6.8332 | 0.195 | 0.8942 | 7.0296 | 0.195 | 0.0714 | 0.2511 | 0.8099 |
|
81 |
+
| No log | 22.96 | 69 | 6.8330 | 0.195 | 0.8942 | 7.0297 | 0.195 | 0.0717 | 0.2572 | 0.8123 |
|
82 |
+
| No log | 23.96 | 72 | 6.8329 | 0.19 | 0.8942 | 7.0294 | 0.19 | 0.0703 | 0.2459 | 0.8148 |
|
83 |
+
| No log | 24.96 | 75 | 6.8328 | 0.19 | 0.8942 | 7.0296 | 0.19 | 0.0703 | 0.2429 | 0.8146 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.26.1
|
89 |
+
- Pytorch 1.13.1.post200
|
90 |
+
- Datasets 2.9.0
|
91 |
+
- Tokenizers 0.13.2
|