dit-tiny_tobacco3482_kd_MSE

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.8328
  • Accuracy: 0.19
  • Brier Loss: 0.8942
  • Nll: 7.0296
  • F1 Micro: 0.19
  • F1 Macro: 0.0703
  • Ece: 0.2429
  • Aurc: 0.8146

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 7.1188 0.145 0.9003 10.1627 0.145 0.0253 0.2218 0.8463
No log 1.96 6 7.0608 0.145 0.8969 9.8809 0.145 0.0253 0.2197 0.8454
No log 2.96 9 6.9777 0.145 0.8929 8.9712 0.145 0.0442 0.2065 0.7921
No log 3.96 12 6.9144 0.17 0.8908 4.9924 0.17 0.0413 0.2325 0.7807
No log 4.96 15 6.8797 0.145 0.8912 6.8983 0.145 0.0399 0.2089 0.7932
No log 5.96 18 6.8636 0.085 0.8926 6.9917 0.085 0.0299 0.1822 0.8755
No log 6.96 21 6.8545 0.075 0.8946 7.0604 0.075 0.0307 0.1849 0.8758
No log 7.96 24 6.8486 0.06 0.8958 7.1035 0.06 0.0230 0.1801 0.8891
No log 8.96 27 6.8455 0.165 0.8967 7.1315 0.165 0.0604 0.2414 0.8438
No log 9.96 30 6.8450 0.185 0.8973 7.1546 0.185 0.0468 0.2477 0.8436
No log 10.96 33 6.8438 0.18 0.8969 7.1569 0.18 0.0308 0.2406 0.8504
No log 11.96 36 6.8414 0.18 0.8962 7.1492 0.18 0.0306 0.2510 0.8501
No log 12.96 39 6.8390 0.18 0.8958 7.1455 0.18 0.0306 0.2374 0.8494
No log 13.96 42 6.8365 0.18 0.8950 7.0793 0.18 0.0306 0.2436 0.8488
No log 14.96 45 6.8349 0.18 0.8944 7.0591 0.18 0.0306 0.2369 0.8486
No log 15.96 48 6.8338 0.18 0.8942 7.0493 0.18 0.0306 0.2396 0.8482
No log 16.96 51 6.8335 0.18 0.8940 7.0429 0.18 0.0309 0.2390 0.8486
No log 17.96 54 6.8341 0.18 0.8943 7.0410 0.18 0.0314 0.2351 0.8514
No log 18.96 57 6.8338 0.19 0.8943 7.0391 0.19 0.0495 0.2480 0.8471
No log 19.96 60 6.8335 0.205 0.8943 7.0342 0.205 0.0722 0.2562 0.8204
No log 20.96 63 6.8334 0.2 0.8942 7.0308 0.2000 0.0683 0.2541 0.8199
No log 21.96 66 6.8332 0.195 0.8942 7.0296 0.195 0.0714 0.2511 0.8099
No log 22.96 69 6.8330 0.195 0.8942 7.0297 0.195 0.0717 0.2572 0.8123
No log 23.96 72 6.8329 0.19 0.8942 7.0294 0.19 0.0703 0.2459 0.8148
No log 24.96 75 6.8328 0.19 0.8942 7.0296 0.19 0.0703 0.2429 0.8146

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.