dit-tiny_tobacco3482_kd_CEKD_t5.0_a0.9

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5147
  • Accuracy: 0.18
  • Brier Loss: 0.8746
  • Nll: 6.7241
  • F1 Micro: 0.18
  • F1 Macro: 0.0306
  • Ece: 0.2451
  • Aurc: 0.8494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 2.6571 0.145 0.8999 10.1542 0.145 0.0253 0.2220 0.8466
No log 1.96 6 2.6281 0.145 0.8947 10.5635 0.145 0.0253 0.2236 0.8461
No log 2.96 9 2.5865 0.14 0.8870 8.5822 0.14 0.0433 0.2063 0.8040
No log 3.96 12 2.5552 0.19 0.8811 6.5445 0.19 0.0552 0.2421 0.8576
No log 4.96 15 2.5387 0.155 0.8782 7.1184 0.155 0.0277 0.2280 0.8892
No log 5.96 18 2.5317 0.18 0.8774 8.7285 0.18 0.0319 0.2392 0.8538
No log 6.96 21 2.5274 0.18 0.8770 8.2533 0.18 0.0306 0.2476 0.8514
No log 7.96 24 2.5238 0.18 0.8767 6.9903 0.18 0.0306 0.2465 0.8523
No log 8.96 27 2.5205 0.18 0.8762 6.9049 0.18 0.0306 0.2473 0.8528
No log 9.96 30 2.5189 0.18 0.8758 6.8830 0.18 0.0306 0.2515 0.8526
No log 10.96 33 2.5180 0.18 0.8756 6.8133 0.18 0.0306 0.2469 0.8522
No log 11.96 36 2.5175 0.18 0.8754 6.7422 0.18 0.0306 0.2500 0.8519
No log 12.96 39 2.5173 0.18 0.8753 6.5762 0.18 0.0306 0.2533 0.8515
No log 13.96 42 2.5168 0.18 0.8751 6.5666 0.18 0.0306 0.2528 0.8516
No log 14.96 45 2.5164 0.18 0.8750 6.7246 0.18 0.0306 0.2532 0.8512
No log 15.96 48 2.5160 0.18 0.8750 6.7221 0.18 0.0306 0.2456 0.8507
No log 16.96 51 2.5157 0.18 0.8749 6.7242 0.18 0.0306 0.2457 0.8507
No log 17.96 54 2.5158 0.18 0.8749 6.7241 0.18 0.0306 0.2417 0.8503
No log 18.96 57 2.5157 0.18 0.8749 6.7259 0.18 0.0306 0.2455 0.8503
No log 19.96 60 2.5153 0.18 0.8748 6.7248 0.18 0.0306 0.2452 0.8495
No log 20.96 63 2.5151 0.18 0.8748 6.7250 0.18 0.0306 0.2414 0.8494
No log 21.96 66 2.5149 0.18 0.8747 6.7250 0.18 0.0306 0.2452 0.8495
No log 22.96 69 2.5147 0.18 0.8747 6.7247 0.18 0.0306 0.2451 0.8495
No log 23.96 72 2.5147 0.18 0.8747 6.7246 0.18 0.0306 0.2451 0.8495
No log 24.96 75 2.5147 0.18 0.8746 6.7241 0.18 0.0306 0.2451 0.8494

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.