update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: dit-tiny_tobacco3482_kd_CEKD_t1.5_a0.9
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# dit-tiny_tobacco3482_kd_CEKD_t1.5_a0.9
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.3286
|
19 |
+
- Accuracy: 0.18
|
20 |
+
- Brier Loss: 0.8742
|
21 |
+
- Nll: 6.7213
|
22 |
+
- F1 Micro: 0.18
|
23 |
+
- F1 Macro: 0.0306
|
24 |
+
- Ece: 0.2558
|
25 |
+
- Aurc: 0.8491
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 16
|
49 |
+
- total_train_batch_size: 256
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 25
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:-------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| No log | 0.96 | 3 | 2.4683 | 0.145 | 0.8999 | 10.1538 | 0.145 | 0.0253 | 0.2220 | 0.8466 |
|
60 |
+
| No log | 1.96 | 6 | 2.4396 | 0.145 | 0.8947 | 10.5704 | 0.145 | 0.0253 | 0.2237 | 0.8463 |
|
61 |
+
| No log | 2.96 | 9 | 2.3985 | 0.145 | 0.8869 | 8.5511 | 0.145 | 0.0451 | 0.2116 | 0.8036 |
|
62 |
+
| No log | 3.96 | 12 | 2.3677 | 0.21 | 0.8810 | 6.5446 | 0.2100 | 0.0611 | 0.2566 | 0.8335 |
|
63 |
+
| No log | 4.96 | 15 | 2.3517 | 0.155 | 0.8780 | 6.8400 | 0.155 | 0.0279 | 0.2309 | 0.8894 |
|
64 |
+
| No log | 5.96 | 18 | 2.3450 | 0.18 | 0.8771 | 8.1897 | 0.18 | 0.0313 | 0.2495 | 0.8531 |
|
65 |
+
| No log | 6.96 | 21 | 2.3407 | 0.18 | 0.8767 | 7.3073 | 0.18 | 0.0306 | 0.2551 | 0.8513 |
|
66 |
+
| No log | 7.96 | 24 | 2.3371 | 0.18 | 0.8763 | 6.9328 | 0.18 | 0.0306 | 0.2501 | 0.8520 |
|
67 |
+
| No log | 8.96 | 27 | 2.3337 | 0.18 | 0.8757 | 6.8828 | 0.18 | 0.0306 | 0.2507 | 0.8525 |
|
68 |
+
| No log | 9.96 | 30 | 2.3321 | 0.18 | 0.8753 | 6.8682 | 0.18 | 0.0306 | 0.2508 | 0.8524 |
|
69 |
+
| No log | 10.96 | 33 | 2.3312 | 0.18 | 0.8751 | 6.7981 | 0.18 | 0.0306 | 0.2462 | 0.8521 |
|
70 |
+
| No log | 11.96 | 36 | 2.3309 | 0.18 | 0.8749 | 6.7375 | 0.18 | 0.0306 | 0.2531 | 0.8520 |
|
71 |
+
| No log | 12.96 | 39 | 2.3307 | 0.18 | 0.8748 | 6.7235 | 0.18 | 0.0306 | 0.2524 | 0.8518 |
|
72 |
+
| No log | 13.96 | 42 | 2.3304 | 0.18 | 0.8747 | 6.7200 | 0.18 | 0.0306 | 0.2482 | 0.8514 |
|
73 |
+
| No log | 14.96 | 45 | 2.3301 | 0.18 | 0.8746 | 6.7201 | 0.18 | 0.0306 | 0.2410 | 0.8509 |
|
74 |
+
| No log | 15.96 | 48 | 2.3298 | 0.18 | 0.8746 | 6.7182 | 0.18 | 0.0306 | 0.2449 | 0.8505 |
|
75 |
+
| No log | 16.96 | 51 | 2.3295 | 0.18 | 0.8745 | 6.7211 | 0.18 | 0.0306 | 0.2412 | 0.8500 |
|
76 |
+
| No log | 17.96 | 54 | 2.3297 | 0.18 | 0.8745 | 6.7201 | 0.18 | 0.0306 | 0.2449 | 0.8496 |
|
77 |
+
| No log | 18.96 | 57 | 2.3296 | 0.18 | 0.8745 | 6.7216 | 0.18 | 0.0306 | 0.2392 | 0.8494 |
|
78 |
+
| No log | 19.96 | 60 | 2.3292 | 0.18 | 0.8744 | 6.7214 | 0.18 | 0.0306 | 0.2371 | 0.8494 |
|
79 |
+
| No log | 20.96 | 63 | 2.3290 | 0.18 | 0.8744 | 6.7222 | 0.18 | 0.0306 | 0.2371 | 0.8493 |
|
80 |
+
| No log | 21.96 | 66 | 2.3288 | 0.18 | 0.8743 | 6.7227 | 0.18 | 0.0306 | 0.2408 | 0.8494 |
|
81 |
+
| No log | 22.96 | 69 | 2.3286 | 0.18 | 0.8743 | 6.7223 | 0.18 | 0.0306 | 0.2558 | 0.8490 |
|
82 |
+
| No log | 23.96 | 72 | 2.3286 | 0.18 | 0.8743 | 6.7218 | 0.18 | 0.0306 | 0.2558 | 0.8491 |
|
83 |
+
| No log | 24.96 | 75 | 2.3286 | 0.18 | 0.8742 | 6.7213 | 0.18 | 0.0306 | 0.2558 | 0.8491 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.26.1
|
89 |
+
- Pytorch 1.13.1.post200
|
90 |
+
- Datasets 2.9.0
|
91 |
+
- Tokenizers 0.13.2
|