dit-tiny_tobacco3482_kd_CEKD_t1.5_a0.9

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3286
  • Accuracy: 0.18
  • Brier Loss: 0.8742
  • Nll: 6.7213
  • F1 Micro: 0.18
  • F1 Macro: 0.0306
  • Ece: 0.2558
  • Aurc: 0.8491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 2.4683 0.145 0.8999 10.1538 0.145 0.0253 0.2220 0.8466
No log 1.96 6 2.4396 0.145 0.8947 10.5704 0.145 0.0253 0.2237 0.8463
No log 2.96 9 2.3985 0.145 0.8869 8.5511 0.145 0.0451 0.2116 0.8036
No log 3.96 12 2.3677 0.21 0.8810 6.5446 0.2100 0.0611 0.2566 0.8335
No log 4.96 15 2.3517 0.155 0.8780 6.8400 0.155 0.0279 0.2309 0.8894
No log 5.96 18 2.3450 0.18 0.8771 8.1897 0.18 0.0313 0.2495 0.8531
No log 6.96 21 2.3407 0.18 0.8767 7.3073 0.18 0.0306 0.2551 0.8513
No log 7.96 24 2.3371 0.18 0.8763 6.9328 0.18 0.0306 0.2501 0.8520
No log 8.96 27 2.3337 0.18 0.8757 6.8828 0.18 0.0306 0.2507 0.8525
No log 9.96 30 2.3321 0.18 0.8753 6.8682 0.18 0.0306 0.2508 0.8524
No log 10.96 33 2.3312 0.18 0.8751 6.7981 0.18 0.0306 0.2462 0.8521
No log 11.96 36 2.3309 0.18 0.8749 6.7375 0.18 0.0306 0.2531 0.8520
No log 12.96 39 2.3307 0.18 0.8748 6.7235 0.18 0.0306 0.2524 0.8518
No log 13.96 42 2.3304 0.18 0.8747 6.7200 0.18 0.0306 0.2482 0.8514
No log 14.96 45 2.3301 0.18 0.8746 6.7201 0.18 0.0306 0.2410 0.8509
No log 15.96 48 2.3298 0.18 0.8746 6.7182 0.18 0.0306 0.2449 0.8505
No log 16.96 51 2.3295 0.18 0.8745 6.7211 0.18 0.0306 0.2412 0.8500
No log 17.96 54 2.3297 0.18 0.8745 6.7201 0.18 0.0306 0.2449 0.8496
No log 18.96 57 2.3296 0.18 0.8745 6.7216 0.18 0.0306 0.2392 0.8494
No log 19.96 60 2.3292 0.18 0.8744 6.7214 0.18 0.0306 0.2371 0.8494
No log 20.96 63 2.3290 0.18 0.8744 6.7222 0.18 0.0306 0.2371 0.8493
No log 21.96 66 2.3288 0.18 0.8743 6.7227 0.18 0.0306 0.2408 0.8494
No log 22.96 69 2.3286 0.18 0.8743 6.7223 0.18 0.0306 0.2558 0.8490
No log 23.96 72 2.3286 0.18 0.8743 6.7218 0.18 0.0306 0.2558 0.8491
No log 24.96 75 2.3286 0.18 0.8742 6.7213 0.18 0.0306 0.2558 0.8491

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.