dit-tiny_rvl_cdip_100_examples_per_class_simkd_CEKD_t1_aNone

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1502
  • Accuracy: 0.0625
  • Brier Loss: 0.9374
  • Nll: 9.1398
  • F1 Micro: 0.0625
  • F1 Macro: 0.0074
  • Ece: 0.1015
  • Aurc: 0.9383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 12 0.1540 0.0625 0.9376 8.5438 0.0625 0.0074 0.1043 0.9530
No log 1.96 24 0.1519 0.0625 0.9376 8.2831 0.0625 0.0074 0.1008 0.9465
No log 2.96 36 0.1512 0.0625 0.9375 8.4629 0.0625 0.0074 0.1028 0.9336
No log 3.96 48 0.1510 0.0625 0.9375 8.6283 0.0625 0.0074 0.1027 0.9365
No log 4.96 60 0.1509 0.0625 0.9375 8.5065 0.0625 0.0074 0.1030 0.9433
No log 5.96 72 0.1508 0.0625 0.9375 8.4779 0.0625 0.0074 0.1017 0.9414
No log 6.96 84 0.1507 0.0625 0.9375 8.5053 0.0625 0.0074 0.1045 0.9438
No log 7.96 96 0.1507 0.0625 0.9375 8.7396 0.0625 0.0074 0.1032 0.9440
No log 8.96 108 0.1506 0.0625 0.9375 8.6420 0.0625 0.0074 0.1031 0.9448
No log 9.96 120 0.1506 0.0625 0.9375 8.8410 0.0625 0.0074 0.1045 0.9438
No log 10.96 132 0.1506 0.0625 0.9374 8.9438 0.0625 0.0074 0.1042 0.9413
No log 11.96 144 0.1505 0.0625 0.9374 8.9847 0.0625 0.0074 0.1032 0.9418
No log 12.96 156 0.1505 0.0625 0.9374 9.0594 0.0625 0.0074 0.1031 0.9397
No log 13.96 168 0.1504 0.0625 0.9374 9.0748 0.0625 0.0074 0.1045 0.9343
No log 14.96 180 0.1504 0.0625 0.9374 9.0912 0.0625 0.0074 0.1018 0.9358
No log 15.96 192 0.1504 0.0625 0.9374 9.0950 0.0625 0.0074 0.1032 0.9331
No log 16.96 204 0.1503 0.0625 0.9374 9.2141 0.0625 0.0074 0.1015 0.9363
No log 17.96 216 0.1503 0.0625 0.9374 9.0918 0.0625 0.0074 0.1046 0.9354
No log 18.96 228 0.1503 0.0625 0.9374 9.1430 0.0625 0.0074 0.1018 0.9385
No log 19.96 240 0.1503 0.0625 0.9374 9.2149 0.0625 0.0074 0.0991 0.9404
No log 20.96 252 0.1503 0.0625 0.9374 9.0900 0.0625 0.0074 0.1043 0.9386
No log 21.96 264 0.1503 0.0625 0.9374 9.1244 0.0625 0.0074 0.1060 0.9395
No log 22.96 276 0.1503 0.0625 0.9374 9.1353 0.0625 0.0074 0.1005 0.9378
No log 23.96 288 0.1502 0.0625 0.9374 9.2063 0.0625 0.0074 0.1032 0.9373
No log 24.96 300 0.1502 0.0625 0.9374 9.1398 0.0625 0.0074 0.1015 0.9383

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.