dit-small_tobacco3482_simkd_CEKD_t1_aNone

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9876
  • Accuracy: 0.085
  • Brier Loss: 0.8927
  • Nll: 8.3272
  • F1 Micro: 0.085
  • F1 Macro: 0.0461
  • Ece: 0.1645
  • Aurc: 0.7988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 12 1.0049 0.08 0.8993 5.4663 0.08 0.0322 0.1476 0.8883
No log 1.96 24 1.0007 0.165 0.8988 5.5926 0.165 0.0284 0.2066 0.8251
No log 2.96 36 0.9994 0.16 0.8982 5.9135 0.16 0.0277 0.2100 0.8518
No log 3.96 48 0.9984 0.17 0.8975 6.1195 0.17 0.0574 0.2142 0.8153
No log 4.96 60 0.9976 0.19 0.8970 6.2724 0.19 0.0752 0.2294 0.8254
No log 5.96 72 0.9967 0.09 0.8968 6.3787 0.09 0.0315 0.1591 0.7950
No log 6.96 84 0.9958 0.065 0.8964 6.4218 0.065 0.0122 0.1433 0.8333
No log 7.96 96 0.9949 0.065 0.8960 6.5170 0.065 0.0122 0.1543 0.8344
No log 8.96 108 0.9941 0.065 0.8956 6.5572 0.065 0.0123 0.1545 0.8331
No log 9.96 120 0.9934 0.07 0.8954 6.6362 0.07 0.0304 0.1597 0.8313
No log 10.96 132 0.9926 0.07 0.8951 6.6430 0.07 0.0304 0.1576 0.8325
No log 11.96 144 0.9920 0.07 0.8948 6.6842 0.07 0.0304 0.1590 0.8225
No log 12.96 156 0.9914 0.07 0.8947 6.7731 0.07 0.0304 0.1619 0.8155
No log 13.96 168 0.9909 0.07 0.8944 6.8584 0.07 0.0304 0.1522 0.8128
No log 14.96 180 0.9904 0.07 0.8941 6.8161 0.07 0.0304 0.1524 0.8142
No log 15.96 192 0.9899 0.07 0.8940 7.3169 0.07 0.0304 0.1532 0.8109
No log 16.96 204 0.9894 0.07 0.8937 7.8481 0.07 0.0304 0.1531 0.8132
No log 17.96 216 0.9890 0.08 0.8935 8.3375 0.08 0.0439 0.1587 0.8002
No log 18.96 228 0.9886 0.07 0.8933 8.4250 0.07 0.0307 0.1536 0.8132
No log 19.96 240 0.9883 0.085 0.8931 8.4316 0.085 0.0445 0.1618 0.8014
No log 20.96 252 0.9880 0.075 0.8930 8.4395 0.075 0.0392 0.1566 0.8088
No log 21.96 264 0.9878 0.085 0.8929 8.3319 0.085 0.0476 0.1621 0.7956
No log 22.96 276 0.9877 0.08 0.8928 8.3274 0.08 0.0439 0.1594 0.8024
No log 23.96 288 0.9876 0.08 0.8927 8.3285 0.08 0.0440 0.1595 0.8014
No log 24.96 300 0.9876 0.085 0.8927 8.3272 0.085 0.0461 0.1645 0.7988

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.