dit-small_tobacco3482_kd_MSE

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.7275
  • Accuracy: 0.21
  • Brier Loss: 0.8834
  • Nll: 6.7677
  • F1 Micro: 0.2100
  • F1 Macro: 0.1146
  • Ece: 0.2647
  • Aurc: 0.7666

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 7.1014 0.06 0.9055 7.9056 0.06 0.0114 0.1732 0.9050
No log 1.96 6 6.9659 0.125 0.8970 10.1253 0.125 0.0631 0.2010 0.8465
No log 2.96 9 6.8528 0.075 0.8954 7.0315 0.075 0.0258 0.1912 0.8871
No log 3.96 12 6.8522 0.205 0.8955 7.0990 0.205 0.0776 0.2426 0.7588
No log 4.96 15 6.8465 0.19 0.8959 7.1340 0.19 0.0627 0.2308 0.7536
No log 5.96 18 6.8246 0.205 0.8937 7.1101 0.205 0.0867 0.2410 0.7354
No log 6.96 21 6.8054 0.085 0.8918 7.0215 0.085 0.0435 0.1847 0.8289
No log 7.96 24 6.8025 0.22 0.8879 6.8272 0.22 0.0967 0.2487 0.7438
No log 8.96 27 6.8045 0.21 0.8871 6.3740 0.2100 0.0992 0.2412 0.7634
No log 9.96 30 6.8013 0.22 0.8869 6.9538 0.22 0.1016 0.2495 0.7633
No log 10.96 33 6.7920 0.215 0.8865 6.9670 0.2150 0.0968 0.2549 0.7577
No log 11.96 36 6.7817 0.22 0.8867 6.9953 0.22 0.1004 0.2455 0.7437
No log 12.96 39 6.7729 0.17 0.8884 6.9738 0.17 0.0891 0.2277 0.7865
No log 13.96 42 6.7632 0.2 0.8873 6.9622 0.2000 0.0998 0.2393 0.7413
No log 14.96 45 6.7548 0.215 0.8860 6.9576 0.2150 0.1010 0.2635 0.7189
No log 15.96 48 6.7489 0.22 0.8857 6.8386 0.22 0.1024 0.2665 0.7098
No log 16.96 51 6.7457 0.23 0.8855 6.8730 0.23 0.1129 0.2506 0.7217
No log 17.96 54 6.7455 0.215 0.8864 6.8688 0.2150 0.1058 0.2576 0.7528
No log 18.96 57 6.7424 0.16 0.8861 6.8631 0.16 0.0843 0.2281 0.8036
No log 19.96 60 6.7380 0.155 0.8850 6.8443 0.155 0.0871 0.2315 0.7937
No log 20.96 63 6.7348 0.195 0.8841 6.7769 0.195 0.0949 0.2501 0.7799
No log 21.96 66 6.7317 0.175 0.8838 6.7692 0.175 0.1025 0.2421 0.7797
No log 22.96 69 6.7293 0.175 0.8836 6.7682 0.175 0.1012 0.2452 0.7799
No log 23.96 72 6.7281 0.205 0.8834 6.7672 0.205 0.1132 0.2566 0.7679
No log 24.96 75 6.7275 0.21 0.8834 6.7677 0.2100 0.1146 0.2647 0.7666

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.