dit-small_tobacco3482_kd_CEKD_t5.0_a0.5

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7912
  • Accuracy: 0.185
  • Brier Loss: 0.8688
  • Nll: 5.6106
  • F1 Micro: 0.185
  • F1 Macro: 0.0488
  • Ece: 0.2524
  • Aurc: 0.7391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 4.0715 0.06 0.9043 8.8976 0.06 0.0114 0.1751 0.9034
No log 1.96 6 3.9774 0.18 0.8893 8.0316 0.18 0.0305 0.2237 0.8040
No log 2.96 9 3.8805 0.18 0.8782 8.6752 0.18 0.0305 0.2566 0.8189
No log 3.96 12 3.8615 0.18 0.8836 8.9177 0.18 0.0305 0.2645 0.8205
No log 4.96 15 3.8624 0.185 0.8844 6.3245 0.185 0.0488 0.2727 0.7889
No log 5.96 18 3.8605 0.185 0.8813 5.1679 0.185 0.0488 0.2558 0.7797
No log 6.96 21 3.8511 0.185 0.8774 5.1770 0.185 0.0488 0.2510 0.7741
No log 7.96 24 3.8410 0.185 0.8751 5.6014 0.185 0.0488 0.2458 0.7699
No log 8.96 27 3.8317 0.185 0.8733 5.9766 0.185 0.0488 0.2537 0.7681
No log 9.96 30 3.8259 0.185 0.8724 6.0278 0.185 0.0488 0.2473 0.7689
No log 10.96 33 3.8226 0.185 0.8724 6.8070 0.185 0.0488 0.2618 0.7671
No log 11.96 36 3.8209 0.185 0.8730 7.6044 0.185 0.0488 0.2539 0.7643
No log 12.96 39 3.8187 0.185 0.8730 8.1654 0.185 0.0488 0.2542 0.7612
No log 13.96 42 3.8147 0.185 0.8725 7.1073 0.185 0.0488 0.2542 0.7566
No log 14.96 45 3.8096 0.185 0.8720 6.3875 0.185 0.0488 0.2565 0.7566
No log 15.96 48 3.8052 0.185 0.8712 6.0256 0.185 0.0488 0.2518 0.7524
No log 16.96 51 3.8022 0.185 0.8707 5.7809 0.185 0.0488 0.2558 0.7485
No log 17.96 54 3.8008 0.185 0.8701 5.6835 0.185 0.0488 0.2496 0.7442
No log 18.96 57 3.7992 0.185 0.8700 5.3867 0.185 0.0488 0.2490 0.7421
No log 19.96 60 3.7965 0.185 0.8694 5.4928 0.185 0.0488 0.2478 0.7406
No log 20.96 63 3.7948 0.185 0.8693 5.5527 0.185 0.0488 0.2481 0.7405
No log 21.96 66 3.7932 0.185 0.8691 5.5585 0.185 0.0488 0.2564 0.7396
No log 22.96 69 3.7921 0.185 0.8689 5.5607 0.185 0.0488 0.2479 0.7391
No log 23.96 72 3.7915 0.185 0.8688 5.6116 0.185 0.0488 0.2523 0.7390
No log 24.96 75 3.7912 0.185 0.8688 5.6106 0.185 0.0488 0.2524 0.7391

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.