dit-small_tobacco3482_kd_CEKD_t1.5_a0.9

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2890
  • Accuracy: 0.19
  • Brier Loss: 0.8648
  • Nll: 6.4150
  • F1 Micro: 0.19
  • F1 Macro: 0.0641
  • Ece: 0.2450
  • Aurc: 0.7332

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 2.4806 0.06 0.9041 9.2838 0.06 0.0114 0.1750 0.9034
No log 1.96 6 2.4041 0.18 0.8884 6.3227 0.18 0.0305 0.2317 0.8027
No log 2.96 9 2.3381 0.18 0.8760 6.9952 0.18 0.0305 0.2424 0.8118
No log 3.96 12 2.3362 0.185 0.8771 6.9040 0.185 0.0488 0.2544 0.7841
No log 4.96 15 2.3345 0.185 0.8747 6.8515 0.185 0.0488 0.2476 0.7768
No log 5.96 18 2.3339 0.185 0.8725 6.0111 0.185 0.0490 0.2457 0.7670
No log 6.96 21 2.3348 0.185 0.8718 5.9199 0.185 0.0488 0.2328 0.7596
No log 7.96 24 2.3310 0.185 0.8711 5.9008 0.185 0.0488 0.2443 0.7536
No log 8.96 27 2.3231 0.185 0.8699 5.8793 0.185 0.0488 0.2337 0.7516
No log 9.96 30 2.3181 0.185 0.8694 6.6980 0.185 0.0488 0.2507 0.7500
No log 10.96 33 2.3139 0.185 0.8692 6.7350 0.185 0.0488 0.2481 0.7488
No log 11.96 36 2.3099 0.185 0.8690 6.7557 0.185 0.0488 0.2484 0.7463
No log 12.96 39 2.3057 0.185 0.8684 6.6765 0.185 0.0488 0.2598 0.7441
No log 13.96 42 2.3014 0.185 0.8676 6.6313 0.185 0.0488 0.2478 0.7420
No log 14.96 45 2.2978 0.185 0.8669 6.6142 0.185 0.0488 0.2496 0.7412
No log 15.96 48 2.2955 0.185 0.8664 6.5990 0.185 0.0488 0.2379 0.7399
No log 16.96 51 2.2947 0.185 0.8662 6.4895 0.185 0.0488 0.2452 0.7375
No log 17.96 54 2.2949 0.185 0.8661 6.4730 0.185 0.0488 0.2438 0.7354
No log 18.96 57 2.2949 0.185 0.8661 6.4244 0.185 0.0488 0.2435 0.7356
No log 19.96 60 2.2930 0.185 0.8657 6.3676 0.185 0.0490 0.2389 0.7341
No log 20.96 63 2.2918 0.19 0.8654 6.4233 0.19 0.0641 0.2446 0.7336
No log 21.96 66 2.2905 0.19 0.8651 6.4742 0.19 0.0641 0.2485 0.7334
No log 22.96 69 2.2897 0.19 0.8649 6.4243 0.19 0.0641 0.2448 0.7332
No log 23.96 72 2.2893 0.19 0.8648 6.4174 0.19 0.0641 0.2450 0.7332
No log 24.96 75 2.2890 0.19 0.8648 6.4150 0.19 0.0641 0.2450 0.7332

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.