dit-small_tobacco3482_kd_CEKD_t1.5_a0.7

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5836
  • Accuracy: 0.185
  • Brier Loss: 0.8652
  • Nll: 6.4546
  • F1 Micro: 0.185
  • F1 Macro: 0.0488
  • Ece: 0.2424
  • Aurc: 0.7342

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 2.8093 0.06 0.9041 9.2868 0.06 0.0114 0.1752 0.9033
No log 1.96 6 2.7245 0.18 0.8884 6.2166 0.18 0.0305 0.2292 0.8036
No log 2.96 9 2.6443 0.18 0.8760 6.9627 0.18 0.0305 0.2437 0.8179
No log 3.96 12 2.6356 0.185 0.8785 6.9306 0.185 0.0488 0.2534 0.7877
No log 4.96 15 2.6338 0.185 0.8768 6.8870 0.185 0.0488 0.2605 0.7787
No log 5.96 18 2.6325 0.185 0.8740 6.2086 0.185 0.0490 0.2453 0.7699
No log 6.96 21 2.6322 0.185 0.8721 5.9554 0.185 0.0488 0.2474 0.7629
No log 7.96 24 2.6293 0.185 0.8712 5.9359 0.185 0.0488 0.2550 0.7576
No log 8.96 27 2.6221 0.185 0.8701 5.9468 0.185 0.0488 0.2436 0.7536
No log 9.96 30 2.6171 0.185 0.8697 6.6875 0.185 0.0488 0.2497 0.7541
No log 10.96 33 2.6126 0.185 0.8697 6.7549 0.185 0.0488 0.2512 0.7517
No log 11.96 36 2.6084 0.185 0.8697 6.7827 0.185 0.0488 0.2476 0.7489
No log 12.96 39 2.6037 0.185 0.8692 6.7652 0.185 0.0488 0.2557 0.7476
No log 13.96 42 2.5986 0.185 0.8683 6.6847 0.185 0.0488 0.2513 0.7446
No log 14.96 45 2.5940 0.185 0.8676 6.6600 0.185 0.0488 0.2572 0.7447
No log 15.96 48 2.5910 0.185 0.8669 6.6410 0.185 0.0488 0.2448 0.7424
No log 16.96 51 2.5897 0.185 0.8667 6.6371 0.185 0.0488 0.2402 0.7402
No log 17.96 54 2.5898 0.185 0.8664 6.5096 0.185 0.0488 0.2549 0.7371
No log 18.96 57 2.5897 0.185 0.8664 6.5160 0.185 0.0488 0.2504 0.7363
No log 19.96 60 2.5877 0.185 0.8660 6.4661 0.185 0.0488 0.2416 0.7346
No log 20.96 63 2.5865 0.185 0.8658 6.4833 0.185 0.0488 0.2459 0.7347
No log 21.96 66 2.5852 0.185 0.8655 6.4690 0.185 0.0488 0.2460 0.7343
No log 22.96 69 2.5843 0.185 0.8654 6.4625 0.185 0.0488 0.2461 0.7340
No log 23.96 72 2.5838 0.185 0.8653 6.4568 0.185 0.0488 0.2424 0.7342
No log 24.96 75 2.5836 0.185 0.8652 6.4546 0.185 0.0488 0.2424 0.7342

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.