dit-small_tobacco3482_kd_CEKD_t1.5_a0.5

This model is a fine-tuned version of microsoft/dit-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8753
  • Accuracy: 0.185
  • Brier Loss: 0.8660
  • Nll: 6.5533
  • F1 Micro: 0.185
  • F1 Macro: 0.0488
  • Ece: 0.2451
  • Aurc: 0.7363

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 3.1378 0.06 0.9042 9.2898 0.06 0.0114 0.1754 0.9032
No log 1.96 6 3.0447 0.18 0.8884 6.2145 0.18 0.0305 0.2294 0.8048
No log 2.96 9 2.9500 0.18 0.8761 6.9445 0.18 0.0305 0.2447 0.8193
No log 3.96 12 2.9328 0.18 0.8800 6.9512 0.18 0.0305 0.2565 0.8122
No log 4.96 15 2.9305 0.185 0.8793 6.9136 0.185 0.0488 0.2557 0.7823
No log 5.96 18 2.9286 0.185 0.8762 6.7762 0.185 0.0488 0.2533 0.7721
No log 6.96 21 2.9265 0.185 0.8731 5.9902 0.185 0.0488 0.2345 0.7682
No log 7.96 24 2.9240 0.185 0.8718 5.9696 0.185 0.0488 0.2625 0.7621
No log 8.96 27 2.9177 0.185 0.8707 5.9711 0.185 0.0488 0.2463 0.7578
No log 9.96 30 2.9129 0.185 0.8702 6.6932 0.185 0.0488 0.2485 0.7574
No log 10.96 33 2.9082 0.185 0.8704 6.7772 0.185 0.0488 0.2500 0.7560
No log 11.96 36 2.9039 0.185 0.8707 6.8060 0.185 0.0488 0.2464 0.7537
No log 12.96 39 2.8990 0.185 0.8704 6.7988 0.185 0.0488 0.2466 0.7515
No log 13.96 42 2.8933 0.185 0.8696 6.7771 0.185 0.0488 0.2505 0.7479
No log 14.96 45 2.8879 0.185 0.8688 6.7597 0.185 0.0488 0.2523 0.7482
No log 15.96 48 2.8840 0.185 0.8679 6.6825 0.185 0.0488 0.2648 0.7454
No log 16.96 51 2.8822 0.185 0.8676 6.6742 0.185 0.0488 0.2473 0.7425
No log 17.96 54 2.8819 0.185 0.8672 6.5521 0.185 0.0488 0.2479 0.7405
No log 18.96 57 2.8817 0.185 0.8671 6.5498 0.185 0.0488 0.2536 0.7385
No log 19.96 60 2.8797 0.185 0.8667 6.5563 0.185 0.0488 0.2442 0.7371
No log 20.96 63 2.8784 0.185 0.8666 6.6145 0.185 0.0488 0.2528 0.7374
No log 21.96 66 2.8770 0.185 0.8663 6.6084 0.185 0.0488 0.2489 0.7366
No log 22.96 69 2.8760 0.185 0.8662 6.5683 0.185 0.0488 0.2448 0.7360
No log 23.96 72 2.8756 0.185 0.8661 6.5544 0.185 0.0488 0.2450 0.7363
No log 24.96 75 2.8753 0.185 0.8660 6.5533 0.185 0.0488 0.2451 0.7363

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.