dit-rvl_maveriq_tobacco3482_2023-07-05

This model is a fine-tuned version of microsoft/dit-base-finetuned-rvlcdip on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4530
  • Accuracy: 0.94

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.96 3 2.2927 0.01
No log 1.96 6 2.2632 0.08
No log 2.96 9 2.2334 0.18
No log 3.96 12 2.2025 0.195
No log 4.96 15 2.1686 0.235
No log 5.96 18 2.1274 0.325
No log 6.96 21 2.0784 0.385
No log 7.96 24 2.0284 0.465
No log 8.96 27 1.9750 0.55
No log 9.96 30 1.9206 0.585
No log 10.96 33 1.8683 0.61
No log 11.96 36 1.8164 0.65
No log 12.96 39 1.7660 0.735
No log 13.96 42 1.7195 0.765
No log 14.96 45 1.6761 0.815
No log 15.96 48 1.6336 0.83
No log 16.96 51 1.5918 0.835
No log 17.96 54 1.5511 0.835
No log 18.96 57 1.5101 0.84
No log 19.96 60 1.4699 0.85
No log 20.96 63 1.4307 0.855
No log 21.96 66 1.3925 0.865
No log 22.96 69 1.3534 0.865
No log 23.96 72 1.3164 0.885
No log 24.96 75 1.2825 0.885
No log 25.96 78 1.2458 0.88
No log 26.96 81 1.2091 0.88
No log 27.96 84 1.1762 0.89
No log 28.96 87 1.1446 0.885
No log 29.96 90 1.1126 0.9
No log 30.96 93 1.0840 0.905
No log 31.96 96 1.0549 0.9
No log 32.96 99 1.0247 0.91
No log 33.96 102 0.9962 0.925
No log 34.96 105 0.9685 0.93
No log 35.96 108 0.9447 0.93
No log 36.96 111 0.9217 0.93
No log 37.96 114 0.9007 0.93
No log 38.96 117 0.8778 0.935
No log 39.96 120 0.8551 0.935
No log 40.96 123 0.8325 0.93
No log 41.96 126 0.8129 0.93
No log 42.96 129 0.7970 0.93
No log 43.96 132 0.7810 0.93
No log 44.96 135 0.7609 0.935
No log 45.96 138 0.7441 0.935
No log 46.96 141 0.7313 0.935
No log 47.96 144 0.7184 0.935
No log 48.96 147 0.7044 0.93
No log 49.96 150 0.6902 0.93
No log 50.96 153 0.6773 0.935
No log 51.96 156 0.6666 0.935
No log 52.96 159 0.6554 0.935
No log 53.96 162 0.6446 0.935
No log 54.96 165 0.6308 0.94
No log 55.96 168 0.6194 0.94
No log 56.96 171 0.6098 0.94
No log 57.96 174 0.6021 0.94
No log 58.96 177 0.5922 0.935
No log 59.96 180 0.5820 0.94
No log 60.96 183 0.5735 0.94
No log 61.96 186 0.5632 0.94
No log 62.96 189 0.5559 0.94
No log 63.96 192 0.5494 0.94
No log 64.96 195 0.5430 0.94
No log 65.96 198 0.5370 0.935
No log 66.96 201 0.5320 0.935
No log 67.96 204 0.5278 0.935
No log 68.96 207 0.5228 0.935
No log 69.96 210 0.5166 0.935
No log 70.96 213 0.5117 0.935
No log 71.96 216 0.5076 0.935
No log 72.96 219 0.5029 0.94
No log 73.96 222 0.4985 0.94
No log 74.96 225 0.4945 0.94
No log 75.96 228 0.4904 0.94
No log 76.96 231 0.4865 0.94
No log 77.96 234 0.4833 0.94
No log 78.96 237 0.4804 0.94
No log 79.96 240 0.4779 0.94
No log 80.96 243 0.4757 0.94
No log 81.96 246 0.4738 0.94
No log 82.96 249 0.4719 0.935
No log 83.96 252 0.4701 0.935
No log 84.96 255 0.4684 0.935
No log 85.96 258 0.4669 0.935
No log 86.96 261 0.4653 0.935
No log 87.96 264 0.4637 0.935
No log 88.96 267 0.4620 0.935
No log 89.96 270 0.4602 0.935
No log 90.96 273 0.4586 0.94
No log 91.96 276 0.4572 0.94
No log 92.96 279 0.4562 0.94
No log 93.96 282 0.4553 0.94
No log 94.96 285 0.4546 0.94
No log 95.96 288 0.4540 0.94
No log 96.96 291 0.4535 0.94
No log 97.96 294 0.4532 0.94
No log 98.96 297 0.4530 0.94
No log 99.96 300 0.4530 0.94

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.