dit-rvl_maveriq_tobacco3482_2023-07-05
This model is a fine-tuned version of microsoft/dit-base-finetuned-rvlcdip on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4530
- Accuracy: 0.94
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.96 | 3 | 2.2927 | 0.01 |
No log | 1.96 | 6 | 2.2632 | 0.08 |
No log | 2.96 | 9 | 2.2334 | 0.18 |
No log | 3.96 | 12 | 2.2025 | 0.195 |
No log | 4.96 | 15 | 2.1686 | 0.235 |
No log | 5.96 | 18 | 2.1274 | 0.325 |
No log | 6.96 | 21 | 2.0784 | 0.385 |
No log | 7.96 | 24 | 2.0284 | 0.465 |
No log | 8.96 | 27 | 1.9750 | 0.55 |
No log | 9.96 | 30 | 1.9206 | 0.585 |
No log | 10.96 | 33 | 1.8683 | 0.61 |
No log | 11.96 | 36 | 1.8164 | 0.65 |
No log | 12.96 | 39 | 1.7660 | 0.735 |
No log | 13.96 | 42 | 1.7195 | 0.765 |
No log | 14.96 | 45 | 1.6761 | 0.815 |
No log | 15.96 | 48 | 1.6336 | 0.83 |
No log | 16.96 | 51 | 1.5918 | 0.835 |
No log | 17.96 | 54 | 1.5511 | 0.835 |
No log | 18.96 | 57 | 1.5101 | 0.84 |
No log | 19.96 | 60 | 1.4699 | 0.85 |
No log | 20.96 | 63 | 1.4307 | 0.855 |
No log | 21.96 | 66 | 1.3925 | 0.865 |
No log | 22.96 | 69 | 1.3534 | 0.865 |
No log | 23.96 | 72 | 1.3164 | 0.885 |
No log | 24.96 | 75 | 1.2825 | 0.885 |
No log | 25.96 | 78 | 1.2458 | 0.88 |
No log | 26.96 | 81 | 1.2091 | 0.88 |
No log | 27.96 | 84 | 1.1762 | 0.89 |
No log | 28.96 | 87 | 1.1446 | 0.885 |
No log | 29.96 | 90 | 1.1126 | 0.9 |
No log | 30.96 | 93 | 1.0840 | 0.905 |
No log | 31.96 | 96 | 1.0549 | 0.9 |
No log | 32.96 | 99 | 1.0247 | 0.91 |
No log | 33.96 | 102 | 0.9962 | 0.925 |
No log | 34.96 | 105 | 0.9685 | 0.93 |
No log | 35.96 | 108 | 0.9447 | 0.93 |
No log | 36.96 | 111 | 0.9217 | 0.93 |
No log | 37.96 | 114 | 0.9007 | 0.93 |
No log | 38.96 | 117 | 0.8778 | 0.935 |
No log | 39.96 | 120 | 0.8551 | 0.935 |
No log | 40.96 | 123 | 0.8325 | 0.93 |
No log | 41.96 | 126 | 0.8129 | 0.93 |
No log | 42.96 | 129 | 0.7970 | 0.93 |
No log | 43.96 | 132 | 0.7810 | 0.93 |
No log | 44.96 | 135 | 0.7609 | 0.935 |
No log | 45.96 | 138 | 0.7441 | 0.935 |
No log | 46.96 | 141 | 0.7313 | 0.935 |
No log | 47.96 | 144 | 0.7184 | 0.935 |
No log | 48.96 | 147 | 0.7044 | 0.93 |
No log | 49.96 | 150 | 0.6902 | 0.93 |
No log | 50.96 | 153 | 0.6773 | 0.935 |
No log | 51.96 | 156 | 0.6666 | 0.935 |
No log | 52.96 | 159 | 0.6554 | 0.935 |
No log | 53.96 | 162 | 0.6446 | 0.935 |
No log | 54.96 | 165 | 0.6308 | 0.94 |
No log | 55.96 | 168 | 0.6194 | 0.94 |
No log | 56.96 | 171 | 0.6098 | 0.94 |
No log | 57.96 | 174 | 0.6021 | 0.94 |
No log | 58.96 | 177 | 0.5922 | 0.935 |
No log | 59.96 | 180 | 0.5820 | 0.94 |
No log | 60.96 | 183 | 0.5735 | 0.94 |
No log | 61.96 | 186 | 0.5632 | 0.94 |
No log | 62.96 | 189 | 0.5559 | 0.94 |
No log | 63.96 | 192 | 0.5494 | 0.94 |
No log | 64.96 | 195 | 0.5430 | 0.94 |
No log | 65.96 | 198 | 0.5370 | 0.935 |
No log | 66.96 | 201 | 0.5320 | 0.935 |
No log | 67.96 | 204 | 0.5278 | 0.935 |
No log | 68.96 | 207 | 0.5228 | 0.935 |
No log | 69.96 | 210 | 0.5166 | 0.935 |
No log | 70.96 | 213 | 0.5117 | 0.935 |
No log | 71.96 | 216 | 0.5076 | 0.935 |
No log | 72.96 | 219 | 0.5029 | 0.94 |
No log | 73.96 | 222 | 0.4985 | 0.94 |
No log | 74.96 | 225 | 0.4945 | 0.94 |
No log | 75.96 | 228 | 0.4904 | 0.94 |
No log | 76.96 | 231 | 0.4865 | 0.94 |
No log | 77.96 | 234 | 0.4833 | 0.94 |
No log | 78.96 | 237 | 0.4804 | 0.94 |
No log | 79.96 | 240 | 0.4779 | 0.94 |
No log | 80.96 | 243 | 0.4757 | 0.94 |
No log | 81.96 | 246 | 0.4738 | 0.94 |
No log | 82.96 | 249 | 0.4719 | 0.935 |
No log | 83.96 | 252 | 0.4701 | 0.935 |
No log | 84.96 | 255 | 0.4684 | 0.935 |
No log | 85.96 | 258 | 0.4669 | 0.935 |
No log | 86.96 | 261 | 0.4653 | 0.935 |
No log | 87.96 | 264 | 0.4637 | 0.935 |
No log | 88.96 | 267 | 0.4620 | 0.935 |
No log | 89.96 | 270 | 0.4602 | 0.935 |
No log | 90.96 | 273 | 0.4586 | 0.94 |
No log | 91.96 | 276 | 0.4572 | 0.94 |
No log | 92.96 | 279 | 0.4562 | 0.94 |
No log | 93.96 | 282 | 0.4553 | 0.94 |
No log | 94.96 | 285 | 0.4546 | 0.94 |
No log | 95.96 | 288 | 0.4540 | 0.94 |
No log | 96.96 | 291 | 0.4535 | 0.94 |
No log | 97.96 | 294 | 0.4532 | 0.94 |
No log | 98.96 | 297 | 0.4530 | 0.94 |
No log | 99.96 | 300 | 0.4530 | 0.94 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.