dit-base_tobacco_crl
This model is a fine-tuned version of jordyvl/dit-base_tobacco on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3591
- Accuracy: 0.935
- Brier Loss: 0.1049
- Nll: 0.7583
- F1 Micro: 0.935
- F1 Macro: 0.9303
- Ece: 0.0608
- Aurc: 0.0092
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 3 | 0.3864 | 0.925 | 0.1155 | 1.0908 | 0.925 | 0.9187 | 0.0833 | 0.0112 |
No log | 1.96 | 6 | 0.3462 | 0.935 | 0.1104 | 1.0903 | 0.935 | 0.9308 | 0.0791 | 0.0123 |
No log | 2.96 | 9 | 0.3278 | 0.94 | 0.1121 | 1.0884 | 0.94 | 0.9399 | 0.0806 | 0.0143 |
No log | 3.96 | 12 | 0.3634 | 0.925 | 0.1178 | 1.0882 | 0.925 | 0.9213 | 0.0849 | 0.0162 |
No log | 4.96 | 15 | 0.3682 | 0.925 | 0.1187 | 1.0834 | 0.925 | 0.9213 | 0.0763 | 0.0167 |
No log | 5.96 | 18 | 0.3456 | 0.93 | 0.1133 | 1.0735 | 0.93 | 0.9247 | 0.0710 | 0.0148 |
No log | 6.96 | 21 | 0.3335 | 0.93 | 0.1107 | 1.0762 | 0.93 | 0.9236 | 0.0598 | 0.0119 |
No log | 7.96 | 24 | 0.3303 | 0.925 | 0.1131 | 1.0704 | 0.925 | 0.9204 | 0.0713 | 0.0113 |
No log | 8.96 | 27 | 0.3394 | 0.93 | 0.1110 | 1.0586 | 0.93 | 0.9246 | 0.0731 | 0.0115 |
No log | 9.96 | 30 | 0.3348 | 0.94 | 0.1067 | 1.0420 | 0.94 | 0.9374 | 0.0677 | 0.0127 |
No log | 10.96 | 33 | 0.3362 | 0.94 | 0.1047 | 1.0205 | 0.94 | 0.9375 | 0.0732 | 0.0137 |
No log | 11.96 | 36 | 0.3314 | 0.94 | 0.1042 | 1.0173 | 0.94 | 0.9390 | 0.0679 | 0.0123 |
No log | 12.96 | 39 | 0.3310 | 0.94 | 0.1089 | 1.0218 | 0.94 | 0.9390 | 0.0728 | 0.0116 |
No log | 13.96 | 42 | 0.3400 | 0.935 | 0.1100 | 1.0094 | 0.935 | 0.9361 | 0.0704 | 0.0140 |
No log | 14.96 | 45 | 0.3507 | 0.93 | 0.1142 | 0.9968 | 0.93 | 0.9292 | 0.0710 | 0.0151 |
No log | 15.96 | 48 | 0.3661 | 0.93 | 0.1178 | 0.9775 | 0.93 | 0.9315 | 0.0668 | 0.0154 |
No log | 16.96 | 51 | 0.3673 | 0.93 | 0.1149 | 0.9696 | 0.93 | 0.9315 | 0.0580 | 0.0135 |
No log | 17.96 | 54 | 0.3520 | 0.935 | 0.1112 | 0.9773 | 0.935 | 0.9317 | 0.0700 | 0.0113 |
No log | 18.96 | 57 | 0.3450 | 0.93 | 0.1074 | 0.9759 | 0.93 | 0.9273 | 0.0580 | 0.0108 |
No log | 19.96 | 60 | 0.3381 | 0.94 | 0.0998 | 0.9696 | 0.94 | 0.9445 | 0.0587 | 0.0124 |
No log | 20.96 | 63 | 0.3371 | 0.935 | 0.0995 | 0.9645 | 0.935 | 0.9346 | 0.0578 | 0.0132 |
No log | 21.96 | 66 | 0.3452 | 0.945 | 0.1014 | 0.9606 | 0.945 | 0.9446 | 0.0617 | 0.0147 |
No log | 22.96 | 69 | 0.3627 | 0.94 | 0.1034 | 0.9504 | 0.94 | 0.9416 | 0.0655 | 0.0141 |
No log | 23.96 | 72 | 0.3576 | 0.945 | 0.1025 | 0.9361 | 0.945 | 0.9445 | 0.0583 | 0.0123 |
No log | 24.96 | 75 | 0.3528 | 0.94 | 0.1008 | 0.9230 | 0.94 | 0.9390 | 0.0610 | 0.0116 |
No log | 25.96 | 78 | 0.3514 | 0.935 | 0.1030 | 0.9219 | 0.935 | 0.9338 | 0.0609 | 0.0112 |
No log | 26.96 | 81 | 0.3560 | 0.94 | 0.1031 | 0.9334 | 0.94 | 0.9370 | 0.0623 | 0.0105 |
No log | 27.96 | 84 | 0.3613 | 0.945 | 0.1038 | 0.9425 | 0.945 | 0.9422 | 0.0570 | 0.0102 |
No log | 28.96 | 87 | 0.3701 | 0.94 | 0.1065 | 0.9366 | 0.94 | 0.9353 | 0.0605 | 0.0098 |
No log | 29.96 | 90 | 0.3682 | 0.94 | 0.1064 | 0.9261 | 0.94 | 0.9353 | 0.0662 | 0.0094 |
No log | 30.96 | 93 | 0.3583 | 0.945 | 0.1022 | 0.9012 | 0.945 | 0.9422 | 0.0591 | 0.0100 |
No log | 31.96 | 96 | 0.3649 | 0.93 | 0.1057 | 0.8904 | 0.93 | 0.9307 | 0.0649 | 0.0112 |
No log | 32.96 | 99 | 0.3597 | 0.935 | 0.1048 | 0.8894 | 0.935 | 0.9359 | 0.0613 | 0.0107 |
No log | 33.96 | 102 | 0.3589 | 0.935 | 0.1056 | 0.8950 | 0.935 | 0.9359 | 0.0657 | 0.0106 |
No log | 34.96 | 105 | 0.3595 | 0.94 | 0.1081 | 0.9086 | 0.94 | 0.9370 | 0.0614 | 0.0104 |
No log | 35.96 | 108 | 0.3626 | 0.94 | 0.1100 | 0.9047 | 0.94 | 0.9370 | 0.0622 | 0.0098 |
No log | 36.96 | 111 | 0.3520 | 0.94 | 0.1073 | 0.8958 | 0.94 | 0.9378 | 0.0579 | 0.0096 |
No log | 37.96 | 114 | 0.3451 | 0.94 | 0.1033 | 0.8793 | 0.94 | 0.9378 | 0.0542 | 0.0094 |
No log | 38.96 | 117 | 0.3427 | 0.935 | 0.1000 | 0.8685 | 0.935 | 0.9309 | 0.0604 | 0.0090 |
No log | 39.96 | 120 | 0.3391 | 0.94 | 0.0977 | 0.8597 | 0.94 | 0.9353 | 0.0548 | 0.0089 |
No log | 40.96 | 123 | 0.3363 | 0.95 | 0.0964 | 0.8537 | 0.9500 | 0.9522 | 0.0576 | 0.0088 |
No log | 41.96 | 126 | 0.3458 | 0.95 | 0.1015 | 0.8524 | 0.9500 | 0.9522 | 0.0590 | 0.0087 |
No log | 42.96 | 129 | 0.3618 | 0.935 | 0.1099 | 0.8628 | 0.935 | 0.9406 | 0.0640 | 0.0094 |
No log | 43.96 | 132 | 0.3631 | 0.935 | 0.1109 | 0.8657 | 0.935 | 0.9406 | 0.0611 | 0.0093 |
No log | 44.96 | 135 | 0.3622 | 0.94 | 0.1076 | 0.8571 | 0.94 | 0.9459 | 0.0555 | 0.0087 |
No log | 45.96 | 138 | 0.3654 | 0.94 | 0.1066 | 0.8452 | 0.94 | 0.9459 | 0.0546 | 0.0083 |
No log | 46.96 | 141 | 0.3672 | 0.935 | 0.1104 | 0.8382 | 0.935 | 0.9431 | 0.0588 | 0.0084 |
No log | 47.96 | 144 | 0.3624 | 0.94 | 0.1081 | 0.8342 | 0.94 | 0.9482 | 0.0611 | 0.0085 |
No log | 48.96 | 147 | 0.3603 | 0.945 | 0.1051 | 0.8251 | 0.945 | 0.9515 | 0.0590 | 0.0084 |
No log | 49.96 | 150 | 0.3540 | 0.945 | 0.1013 | 0.8215 | 0.945 | 0.9515 | 0.0571 | 0.0082 |
No log | 50.96 | 153 | 0.3538 | 0.945 | 0.0996 | 0.8169 | 0.945 | 0.9515 | 0.0600 | 0.0083 |
No log | 51.96 | 156 | 0.3588 | 0.945 | 0.1014 | 0.8110 | 0.945 | 0.9515 | 0.0557 | 0.0082 |
No log | 52.96 | 159 | 0.3600 | 0.945 | 0.1029 | 0.8046 | 0.945 | 0.9515 | 0.0597 | 0.0085 |
No log | 53.96 | 162 | 0.3615 | 0.94 | 0.1037 | 0.7998 | 0.94 | 0.9398 | 0.0556 | 0.0083 |
No log | 54.96 | 165 | 0.3589 | 0.94 | 0.1037 | 0.7987 | 0.94 | 0.9398 | 0.0562 | 0.0082 |
No log | 55.96 | 168 | 0.3582 | 0.945 | 0.1037 | 0.7922 | 0.945 | 0.9515 | 0.0570 | 0.0083 |
No log | 56.96 | 171 | 0.3695 | 0.945 | 0.1032 | 0.7887 | 0.945 | 0.9515 | 0.0590 | 0.0092 |
No log | 57.96 | 174 | 0.3764 | 0.945 | 0.1008 | 0.7897 | 0.945 | 0.9490 | 0.0637 | 0.0098 |
No log | 58.96 | 177 | 0.3719 | 0.955 | 0.0990 | 0.7909 | 0.955 | 0.9575 | 0.0616 | 0.0099 |
No log | 59.96 | 180 | 0.3613 | 0.95 | 0.0977 | 0.7942 | 0.9500 | 0.9543 | 0.0550 | 0.0096 |
No log | 60.96 | 183 | 0.3593 | 0.95 | 0.0984 | 0.7958 | 0.9500 | 0.9543 | 0.0573 | 0.0100 |
No log | 61.96 | 186 | 0.3583 | 0.945 | 0.1005 | 0.7982 | 0.945 | 0.9512 | 0.0542 | 0.0102 |
No log | 62.96 | 189 | 0.3594 | 0.94 | 0.1027 | 0.7994 | 0.94 | 0.9483 | 0.0558 | 0.0101 |
No log | 63.96 | 192 | 0.3627 | 0.94 | 0.1042 | 0.7976 | 0.94 | 0.9483 | 0.0554 | 0.0101 |
No log | 64.96 | 195 | 0.3668 | 0.94 | 0.1053 | 0.7944 | 0.94 | 0.9483 | 0.0560 | 0.0104 |
No log | 65.96 | 198 | 0.3685 | 0.94 | 0.1063 | 0.7914 | 0.94 | 0.9483 | 0.0548 | 0.0104 |
No log | 66.96 | 201 | 0.3701 | 0.94 | 0.1060 | 0.7880 | 0.94 | 0.9483 | 0.0563 | 0.0105 |
No log | 67.96 | 204 | 0.3668 | 0.94 | 0.1047 | 0.7872 | 0.94 | 0.9483 | 0.0555 | 0.0111 |
No log | 68.96 | 207 | 0.3682 | 0.945 | 0.1046 | 0.7863 | 0.945 | 0.9512 | 0.0587 | 0.0115 |
No log | 69.96 | 210 | 0.3692 | 0.94 | 0.1054 | 0.7855 | 0.94 | 0.9425 | 0.0584 | 0.0117 |
No log | 70.96 | 213 | 0.3734 | 0.94 | 0.1071 | 0.7829 | 0.94 | 0.9425 | 0.0582 | 0.0116 |
No log | 71.96 | 216 | 0.3733 | 0.94 | 0.1079 | 0.7802 | 0.94 | 0.9425 | 0.0576 | 0.0116 |
No log | 72.96 | 219 | 0.3720 | 0.935 | 0.1081 | 0.7769 | 0.935 | 0.9396 | 0.0579 | 0.0109 |
No log | 73.96 | 222 | 0.3689 | 0.93 | 0.1074 | 0.7723 | 0.93 | 0.9296 | 0.0652 | 0.0096 |
No log | 74.96 | 225 | 0.3687 | 0.935 | 0.1057 | 0.7701 | 0.935 | 0.9327 | 0.0634 | 0.0090 |
No log | 75.96 | 228 | 0.3672 | 0.935 | 0.1053 | 0.7723 | 0.935 | 0.9327 | 0.0606 | 0.0083 |
No log | 76.96 | 231 | 0.3649 | 0.935 | 0.1051 | 0.7772 | 0.935 | 0.9303 | 0.0575 | 0.0084 |
No log | 77.96 | 234 | 0.3654 | 0.935 | 0.1055 | 0.7806 | 0.935 | 0.9303 | 0.0633 | 0.0084 |
No log | 78.96 | 237 | 0.3630 | 0.935 | 0.1048 | 0.7823 | 0.935 | 0.9312 | 0.0647 | 0.0086 |
No log | 79.96 | 240 | 0.3613 | 0.935 | 0.1036 | 0.7819 | 0.935 | 0.9312 | 0.0552 | 0.0088 |
No log | 80.96 | 243 | 0.3578 | 0.94 | 0.1020 | 0.7808 | 0.94 | 0.9356 | 0.0550 | 0.0086 |
No log | 81.96 | 246 | 0.3561 | 0.94 | 0.1009 | 0.7794 | 0.94 | 0.9356 | 0.0551 | 0.0086 |
No log | 82.96 | 249 | 0.3573 | 0.935 | 0.1010 | 0.7767 | 0.935 | 0.9303 | 0.0557 | 0.0088 |
No log | 83.96 | 252 | 0.3574 | 0.935 | 0.1010 | 0.7744 | 0.935 | 0.9303 | 0.0556 | 0.0089 |
No log | 84.96 | 255 | 0.3574 | 0.935 | 0.1004 | 0.7696 | 0.935 | 0.9303 | 0.0562 | 0.0091 |
No log | 85.96 | 258 | 0.3578 | 0.935 | 0.1003 | 0.7659 | 0.935 | 0.9303 | 0.0593 | 0.0088 |
No log | 86.96 | 261 | 0.3569 | 0.935 | 0.0994 | 0.7640 | 0.935 | 0.9303 | 0.0599 | 0.0090 |
No log | 87.96 | 264 | 0.3541 | 0.94 | 0.0984 | 0.7629 | 0.94 | 0.9390 | 0.0592 | 0.0094 |
No log | 88.96 | 267 | 0.3529 | 0.94 | 0.0982 | 0.7613 | 0.94 | 0.9390 | 0.0555 | 0.0095 |
No log | 89.96 | 270 | 0.3517 | 0.94 | 0.0984 | 0.7598 | 0.94 | 0.9390 | 0.0514 | 0.0095 |
No log | 90.96 | 273 | 0.3528 | 0.94 | 0.0992 | 0.7586 | 0.94 | 0.9390 | 0.0516 | 0.0096 |
No log | 91.96 | 276 | 0.3539 | 0.94 | 0.1004 | 0.7581 | 0.94 | 0.9390 | 0.0518 | 0.0095 |
No log | 92.96 | 279 | 0.3551 | 0.94 | 0.1016 | 0.7583 | 0.94 | 0.9390 | 0.0559 | 0.0095 |
No log | 93.96 | 282 | 0.3565 | 0.94 | 0.1028 | 0.7586 | 0.94 | 0.9390 | 0.0554 | 0.0093 |
No log | 94.96 | 285 | 0.3572 | 0.94 | 0.1035 | 0.7588 | 0.94 | 0.9390 | 0.0554 | 0.0093 |
No log | 95.96 | 288 | 0.3586 | 0.94 | 0.1041 | 0.7587 | 0.94 | 0.9390 | 0.0556 | 0.0092 |
No log | 96.96 | 291 | 0.3586 | 0.94 | 0.1044 | 0.7586 | 0.94 | 0.9390 | 0.0607 | 0.0092 |
No log | 97.96 | 294 | 0.3589 | 0.94 | 0.1047 | 0.7585 | 0.94 | 0.9390 | 0.0608 | 0.0092 |
No log | 98.96 | 297 | 0.3590 | 0.935 | 0.1049 | 0.7584 | 0.935 | 0.9303 | 0.0608 | 0.0092 |
No log | 99.96 | 300 | 0.3591 | 0.935 | 0.1049 | 0.7583 | 0.935 | 0.9303 | 0.0608 | 0.0092 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support