dit-base_tobacco-tiny_tobacco3482_kd_NKD_t1.0_g1.5

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1418
  • Accuracy: 0.84
  • Brier Loss: 0.2718
  • Nll: 0.9778
  • F1 Micro: 0.8400
  • F1 Macro: 0.8296
  • Ece: 0.1553
  • Aurc: 0.0479

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 7 5.6749 0.2 0.9075 8.1551 0.2000 0.1380 0.2949 0.8075
No log 2.0 14 5.1602 0.15 0.8781 7.4212 0.15 0.1415 0.2402 0.7606
No log 3.0 21 4.4947 0.46 0.7066 2.8419 0.46 0.4202 0.3230 0.3244
No log 4.0 28 3.9789 0.555 0.5827 1.6986 0.555 0.5525 0.2796 0.2218
No log 5.0 35 3.6991 0.65 0.4828 1.7197 0.65 0.6491 0.2315 0.1491
No log 6.0 42 3.6495 0.68 0.4691 1.8258 0.68 0.6586 0.2555 0.1358
No log 7.0 49 3.3912 0.75 0.3899 1.8385 0.75 0.7276 0.2237 0.0920
No log 8.0 56 3.3055 0.71 0.3792 1.5754 0.7100 0.6922 0.2130 0.1023
No log 9.0 63 3.3535 0.72 0.3836 1.7076 0.72 0.7195 0.2015 0.0978
No log 10.0 70 3.1877 0.785 0.3190 1.5736 0.785 0.7582 0.1905 0.0693
No log 11.0 77 3.5578 0.72 0.3812 2.2613 0.72 0.7241 0.1684 0.0846
No log 12.0 84 3.3589 0.775 0.3389 1.3228 0.775 0.7540 0.1665 0.0764
No log 13.0 91 3.1097 0.805 0.2856 1.4183 0.805 0.7929 0.1603 0.0484
No log 14.0 98 3.2661 0.815 0.3146 1.9097 0.815 0.8066 0.1753 0.0636
No log 15.0 105 3.3637 0.755 0.3361 1.5166 0.755 0.7492 0.1804 0.0720
No log 16.0 112 3.1495 0.8 0.2994 1.4586 0.8000 0.7926 0.1714 0.0604
No log 17.0 119 3.1573 0.8 0.2941 1.6755 0.8000 0.7899 0.1545 0.0577
No log 18.0 126 3.4445 0.77 0.3416 1.4075 0.7700 0.7503 0.1620 0.0807
No log 19.0 133 3.1292 0.805 0.2816 1.3835 0.805 0.7815 0.1768 0.0526
No log 20.0 140 3.4253 0.75 0.3459 2.0430 0.75 0.7591 0.1697 0.0706
No log 21.0 147 3.1645 0.81 0.3000 1.7363 0.81 0.8113 0.1711 0.0614
No log 22.0 154 3.0823 0.815 0.2791 1.5997 0.815 0.8020 0.1417 0.0556
No log 23.0 161 2.9898 0.83 0.2521 1.4274 0.83 0.8189 0.1589 0.0434
No log 24.0 168 3.0915 0.83 0.2770 1.3516 0.83 0.8173 0.1495 0.0538
No log 25.0 175 3.0405 0.825 0.2621 1.5191 0.825 0.8048 0.1329 0.0494
No log 26.0 182 3.0621 0.815 0.2735 1.0698 0.815 0.7955 0.1617 0.0522
No log 27.0 189 3.0228 0.835 0.2650 1.4235 0.835 0.8315 0.1565 0.0502
No log 28.0 196 3.0677 0.82 0.2778 1.5299 0.82 0.8165 0.1660 0.0557
No log 29.0 203 3.0272 0.825 0.2699 1.4726 0.825 0.8204 0.1643 0.0491
No log 30.0 210 3.1090 0.815 0.2892 1.3258 0.815 0.8026 0.1585 0.0536
No log 31.0 217 3.1069 0.81 0.2866 1.5638 0.81 0.8050 0.1473 0.0557
No log 32.0 224 3.0374 0.815 0.2765 1.2895 0.815 0.8045 0.1476 0.0527
No log 33.0 231 3.0503 0.815 0.2750 1.3113 0.815 0.7975 0.1531 0.0517
No log 34.0 238 2.9852 0.82 0.2613 1.4575 0.82 0.8110 0.1600 0.0448
No log 35.0 245 3.0437 0.83 0.2724 1.3491 0.83 0.8205 0.1622 0.0571
No log 36.0 252 3.0098 0.82 0.2717 1.2671 0.82 0.8055 0.1567 0.0519
No log 37.0 259 3.0025 0.845 0.2599 1.2628 0.845 0.8255 0.1342 0.0481
No log 38.0 266 3.1854 0.805 0.3015 1.2550 0.805 0.7956 0.1560 0.0601
No log 39.0 273 3.0704 0.82 0.2793 1.2393 0.82 0.8057 0.1566 0.0557
No log 40.0 280 3.0739 0.825 0.2842 1.2701 0.825 0.8169 0.1371 0.0513
No log 41.0 287 3.0465 0.835 0.2747 1.2598 0.835 0.8302 0.1449 0.0538
No log 42.0 294 3.0691 0.825 0.2773 1.1796 0.825 0.8137 0.1372 0.0511
No log 43.0 301 3.0734 0.84 0.2732 1.1765 0.8400 0.8282 0.1564 0.0565
No log 44.0 308 3.0262 0.845 0.2622 1.2152 0.845 0.8306 0.1457 0.0541
No log 45.0 315 3.0610 0.835 0.2727 1.2249 0.835 0.8261 0.1606 0.0544
No log 46.0 322 3.0358 0.84 0.2767 1.1020 0.8400 0.8323 0.1416 0.0527
No log 47.0 329 2.9893 0.835 0.2650 1.1536 0.835 0.8252 0.1386 0.0493
No log 48.0 336 3.0498 0.84 0.2726 1.1253 0.8400 0.8320 0.1302 0.0535
No log 49.0 343 2.9816 0.845 0.2585 1.2068 0.845 0.8355 0.1455 0.0451
No log 50.0 350 3.0431 0.835 0.2686 1.0596 0.835 0.8238 0.1542 0.0540
No log 51.0 357 3.0200 0.835 0.2639 1.1806 0.835 0.8290 0.1434 0.0501
No log 52.0 364 3.0217 0.845 0.2664 1.0846 0.845 0.8324 0.1671 0.0503
No log 53.0 371 3.0255 0.84 0.2649 1.1803 0.8400 0.8318 0.1350 0.0488
No log 54.0 378 3.0069 0.835 0.2616 1.2057 0.835 0.8190 0.1284 0.0496
No log 55.0 385 3.0609 0.815 0.2746 1.0378 0.815 0.7970 0.1422 0.0490
No log 56.0 392 3.0111 0.84 0.2622 1.1806 0.8400 0.8341 0.1428 0.0513
No log 57.0 399 3.0050 0.84 0.2643 1.1898 0.8400 0.8299 0.1452 0.0494
No log 58.0 406 3.0426 0.84 0.2662 1.0337 0.8400 0.8307 0.1397 0.0514
No log 59.0 413 3.0427 0.835 0.2682 1.0309 0.835 0.8247 0.1453 0.0491
No log 60.0 420 3.0449 0.83 0.2744 1.0039 0.83 0.8141 0.1436 0.0484
No log 61.0 427 3.0524 0.83 0.2729 1.1480 0.83 0.8162 0.1454 0.0477
No log 62.0 434 3.0290 0.835 0.2610 1.1757 0.835 0.8264 0.1476 0.0506
No log 63.0 441 3.0574 0.83 0.2712 1.0242 0.83 0.8161 0.1464 0.0485
No log 64.0 448 3.0436 0.835 0.2684 1.1326 0.835 0.8267 0.1417 0.0470
No log 65.0 455 3.0170 0.84 0.2610 1.1095 0.8400 0.8289 0.1520 0.0492
No log 66.0 462 3.0176 0.835 0.2623 1.1140 0.835 0.8225 0.1262 0.0459
No log 67.0 469 3.0712 0.84 0.2735 1.0884 0.8400 0.8296 0.1421 0.0516
No log 68.0 476 3.0258 0.84 0.2670 1.1388 0.8400 0.8279 0.1478 0.0461
No log 69.0 483 3.0838 0.835 0.2707 1.0937 0.835 0.8232 0.1425 0.0477
No log 70.0 490 3.1076 0.82 0.2819 1.0030 0.82 0.7998 0.1507 0.0480
No log 71.0 497 3.0696 0.84 0.2725 1.0175 0.8400 0.8349 0.1567 0.0501
2.6485 72.0 504 3.0535 0.84 0.2676 1.0079 0.8400 0.8253 0.1351 0.0477
2.6485 73.0 511 3.0326 0.83 0.2667 0.9792 0.83 0.8093 0.1334 0.0464
2.6485 74.0 518 3.0271 0.835 0.2616 1.0865 0.835 0.8193 0.1223 0.0454
2.6485 75.0 525 3.0894 0.83 0.2732 0.9764 0.83 0.8123 0.1446 0.0489
2.6485 76.0 532 3.0905 0.835 0.2730 1.0736 0.835 0.8232 0.1578 0.0485
2.6485 77.0 539 3.0507 0.84 0.2646 1.0716 0.8400 0.8279 0.1424 0.0469
2.6485 78.0 546 3.0981 0.845 0.2712 0.9916 0.845 0.8324 0.1452 0.0508
2.6485 79.0 553 3.0820 0.84 0.2728 0.9791 0.8400 0.8296 0.1403 0.0473
2.6485 80.0 560 3.0978 0.84 0.2733 0.9864 0.8400 0.8296 0.1480 0.0485
2.6485 81.0 567 3.0936 0.84 0.2716 0.9955 0.8400 0.8296 0.1483 0.0474
2.6485 82.0 574 3.0937 0.845 0.2685 0.9875 0.845 0.8324 0.1459 0.0486
2.6485 83.0 581 3.0940 0.84 0.2719 0.9863 0.8400 0.8296 0.1481 0.0470
2.6485 84.0 588 3.0745 0.84 0.2656 1.0795 0.8400 0.8323 0.1460 0.0476
2.6485 85.0 595 3.1089 0.845 0.2681 1.0050 0.845 0.8324 0.1568 0.0492
2.6485 86.0 602 3.0880 0.84 0.2695 1.0607 0.8400 0.8296 0.1409 0.0474
2.6485 87.0 609 3.0848 0.84 0.2666 0.9996 0.8400 0.8296 0.1425 0.0470
2.6485 88.0 616 3.1144 0.84 0.2682 0.9937 0.8400 0.8296 0.1380 0.0482
2.6485 89.0 623 3.1316 0.84 0.2711 0.9884 0.8400 0.8296 0.1484 0.0490
2.6485 90.0 630 3.1312 0.84 0.2726 0.9732 0.8400 0.8296 0.1525 0.0488
2.6485 91.0 637 3.1312 0.84 0.2723 0.9794 0.8400 0.8296 0.1475 0.0481
2.6485 92.0 644 3.1426 0.84 0.2731 0.9728 0.8400 0.8296 0.1478 0.0491
2.6485 93.0 651 3.1351 0.84 0.2709 0.9741 0.8400 0.8296 0.1438 0.0483
2.6485 94.0 658 3.1390 0.84 0.2716 0.9764 0.8400 0.8296 0.1576 0.0483
2.6485 95.0 665 3.1366 0.84 0.2711 0.9795 0.8400 0.8296 0.1480 0.0484
2.6485 96.0 672 3.1337 0.84 0.2710 0.9828 0.8400 0.8296 0.1475 0.0478
2.6485 97.0 679 3.1431 0.84 0.2723 0.9767 0.8400 0.8296 0.1587 0.0480
2.6485 98.0 686 3.1388 0.84 0.2713 0.9808 0.8400 0.8296 0.1476 0.0480
2.6485 99.0 693 3.1420 0.84 0.2718 0.9778 0.8400 0.8296 0.1560 0.0480
2.6485 100.0 700 3.1418 0.84 0.2718 0.9778 0.8400 0.8296 0.1553 0.0479

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.2.0.dev20231112+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
10
Safetensors
Model size
5.53M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jordyvl/dit-base_tobacco-tiny_tobacco3482_kd_NKD_t1.0_g1.5

Finetuned
(14)
this model