Load Merged Model (Recommended, identical configuration to a fine-tuned model)
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
repo_id = "jordiclive/falcon-40b-lora-sft-stage2-1.1k"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModelForCausalLM.from_pretrained(
repo_id,
torch_dtype=dtype,
trust_remote_code=True,
)
Model Details
- Developed as part of the OpenAssistant Project
- Model type: LoRA (PEFT)
- Language: English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
- Finetuned from: tiiuae/falcon-40b
- Model type: Causal decoder-only transformer language model
- Weights & Biases: Training log1 Training log2
LoRA Adapter for Falcon 40B trained on oasst-top1
This repo contains a Falcon 40B LoRA fine-tuned model and the low-rank adapter fit on datasets part of the OpenAssistant project.
This version of the weights was trained with the following hyperparameters:
SFT 1
- Epochs: 2
- Batch size: 128
- Max Length: 2048
- Learning rate: 1e-4
- Lora r: 64
- Lora Alpha: 16
- Lora target modules: ["dense_4h_to_h", "dense", "query_key_value", "dense_h_to_4h"]
SFT2
- Epochs: 10
- Batch size: 128
The model was trained with flash attention and gradient checkpointing and deepspeed stage 3 on 8 x A100 80gb
Dataset: SFT1:
- oa_leet10k:
val_split: 0.05
max_val_set: 250
- cmu_wiki_qa:
val_split: 0.05
- joke:
val_split: 0.05
- webgpt:
val_split: 0.05
max_val_set: 250
- alpaca_gpt4:
val_split: 0.025
max_val_set: 250
- gpteacher_roleplay:
val_split: 0.05
- wizardlm_70k:
val_split: 0.05
max_val_set: 500
- poem_instructions:
val_split: 0.025
- tell_a_joke:
val_split: 0.05
max_val_set: 250
- gpt4all:
val_split: 0.01
max_val_set: 1000
- minimath:
val_split: 0.05
- humaneval_mbpp_codegen_qa:
val_split: 0.05
- humaneval_mbpp_testgen_qa:
val_split: 0.05
- dolly15k:
val_split: 0.05
max_val_set: 300
- recipes:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
- vicuna:
fraction: 0.5
val_split: 0.025
max_val_set: 250
- oa_wiki_qa_bart_10000row:
val_split: 0.05
max_val_set: 250
- grade_school_math_instructions:
val_split: 0.05
SFT2
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0
input_file_path: 2023-05-06_OASST_labels.jsonl.gz
val_split: 0.05
top_k: 1
- lima:
val_split: 0.05
max_val_set: 50
Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
<|prompter|>
and <|assistant|>
. Each turn ends with a <|endoftext|>
token.
Input prompt example:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
The input ends with the <|assistant|>
token to signal that the model should
start generating the assistant reply.
Example Inference code (Prompt Template)
model = model.to(device)
if dtype == torch.float16:
model = model.half()
# Choose Generation parameters
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
)
def format_system_prompt(prompt, eos_token=tokenizer.eos_token):
return "{}{}{}{}".format("<|prompter|>", prompt, eos_token, "<|assistant|>")
def generate(prompt, generation_config=generation_config, max_new_tokens=2048, device=device):
prompt = format_system_prompt(prompt,eos_token=tokenizer.eos_token) # OpenAssistant Prompt Format expected
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
eos_token_id=tokenizer.eos_token_id,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print("Text generated:")
print(output)
return output
LoRA weights
If you want to use the LoRA weights separately, several special token embeddings also need to be added.
base_model_id = "tiiuae/falcon-40b"
import torch
import transformers
from huggingface_hub import hf_hub_download
from peft import PeftModel
def add_embeddings(model, embed_path, tokenizer):
old_embeddings = model.get_input_embeddings()
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
new_embeddings = torch.nn.Embedding(old_num_tokens, old_embedding_dim)
new_embeddings.to(old_embeddings.weight.device, dtype=old_embeddings.weight.dtype)
model._init_weights(new_embeddings)
embed_weights = torch.load(embed_path, map_location=old_embeddings.weight.device)
vocab_size = tokenizer.vocab_size
new_embeddings.weight.data[:vocab_size, :] = old_embeddings.weight.data[:vocab_size, :]
new_embeddings.weight.data[vocab_size : vocab_size + embed_weights.shape[0], :] = embed_weights.to(
new_embeddings.weight.dtype
).to(new_embeddings.weight.device)
model.set_input_embeddings(new_embeddings)
model.tie_weights()
def load_peft_model(model, peft_model_path, tokenizer):
embed_weights = hf_hub_download(peft_model_path, "extra_embeddings.pt")
model.resize_token_embeddings(tokenizer.vocab_size + torch.load(embed_weights).shape[0])
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model = PeftModel.from_pretrained(
model,
model_id=peft_model_path,
torch_dtype=model.dtype,
)
model.eos_token_id = tokenizer.eos_token_id
add_embeddings(model, embed_weights, tokenizer)
return model
def load_lora_model(base_model_id, tokenizer, device, dtype):
model = transformers.AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=dtype,
trust_remote_code=True,
)
model = load_peft_model(model, repo_id, tokenizer)
model = model.to(device)
return model
model = load_lora_model(base_model_id=base_model_id, tokenizer=tokenizer, device=device, dtype=dtype)
- Downloads last month
- 20
Inference API (serverless) does not yet support model repos that contain custom code.