jonathandinu's picture
Update README.md
d859e69 verified
metadata
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: cc0-1.0
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - text-to-image
  - diffusers
  - diffusers-training
  - lora
inference: true

LoRA fine-tuning - jonathandinu/sdxl-metamorphosis

These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on illustrations from Maria Sibylla Merian’s Metamorphosis Insectorum Surinamensium (1705).

image grid

LoRA for the text encoder was enabled: False.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.

Intended uses & limitations

How to use

text2img

from diffusers import DiffusionPipeline, AutoencoderKL, utils

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",  vae=vae, torch_dtype=torch.float16, variant="fp16")
pipeline.to("cuda")

pipeline.load_lora_weights("jonathandinu/sdxl-metamorphosis-lora", weight_name="pytorch_lora_weights.safetensors")

pipeline(
  prompt="an astronaut in the jungle",
  num_inference_steps=30,
  generator=torch.manual_seed(1)
).images[0]

img2img

from diffusers import AutoPipelineForImage2Image

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-sdxl-init.png"

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

pipeline = AutoPipelineForImage2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",  vae=vae, torch_dtype=torch.float16, variant="fp16")
pipeline.to("cuda")

pipeline.load_lora_weights("jonathandinu/sdxl-metamorphosis-lora", weight_name="pytorch_lora_weights.safetensors")

pipeline(
  prompt="an astronaut in the jungle",
  image=init_image,
  num_inference_steps=30,
  generator=torch.manual_seed(1),
  strength=0.7
).images[0]

Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

Training details

[TODO: describe the data used to train the model]