grid of 4x2 images generated from the model

Model Card for ddpm-ema-sfhq-256

Unconditional DDPM diffusion model trained from scratch on part 4 of the SFHQ dataset of synthetic faces.

accelerate launch train_unconditional.py \
  --train_data_dir="/notebooks/sfhq" \
  --resolution=256 --center_crop --random_flip \
  --output_dir="ddpm-ema-sfhq-256" \
  --train_batch_size=8 \
  --num_epochs=400 \
  --save_images_epochs=1 \
  --save_model_epochs=20 \
  --gradient_accumulation_steps=1 \
  --use_ema \
  --learning_rate=1e-4 \
  --lr_warmup_steps=500 \
  --resume_from_checkpoint="latest" \
  --mixed_precision="fp16" \
  --checkpoints_total_limit=5 \
  --checkpointing_steps=5000

Model Description

  • Developed and funded by: Jonathan Dinu
  • Model type: Unconditional DDPM diffusion model
  • License: non-commercial research and educational purposes
  • Training steps: 2,430,000 (155 epochs)
  • Resolution: 256x256 pixels
Downloads last month
42
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.