jonatasgrosman's picture
Update README.md
9a2efcb
|
raw
history blame
5.83 kB
metadata
language: es
datasets:
  - common_voice
metrics:
  - wer
  - cer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: XLSR Wav2Vec2 Spanish by Jonatas Grosman
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice es
          type: common_voice
          args: es
        metrics:
          - name: Test WER
            type: wer
            value: 10.07
          - name: Test CER
            type: cer
            value: 3.04

Wav2Vec2-Large-XLSR-53-Spanish

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Spanish using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

Usage

The model can be used directly (without a language model) as follows:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "es"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish"
SAMPLES = 5

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
Reference Prediction
HABITA EN AGUAS POCO PROFUNDAS Y ROCOSAS. HABITAN AGUAS POCO PROFUNDAS Y ROCOSAS
OPERA PRINCIPALMENTE VUELOS DE CABOTAJE Y REGIONALES DE CARGA. OPERA PRINCIPALMENTE VUELO DE CARBOTAJES Y REGIONALES DE CARGAN
PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN. PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN
TRES TRES
REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA, PARA CONTINUAR LUEGO EN ESPAÑA. REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA PARA CONTINUAR LUEGO EN ESPAÑA

Evaluation

The model can be evaluated as follows on the Spanish test data of Common Voice.

import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "es"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", 
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

\twith torch.no_grad():
\t\tlogits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

\tpred_ids = torch.argmax(logits, dim=-1)
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\treturn batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")

Test Result:

My model may report better scores than others because of some specificity of my evaluation script, so I ran the same evaluation script on other models (on 2021-04-22) to make a fairer comparison.

Model WER CER
jonatasgrosman/wav2vec2-large-xlsr-53-spanish 10.07% 3.04%
pcuenq/wav2vec2-large-xlsr-53-es 10.55% 3.20%
facebook/wav2vec2-large-xlsr-53-spanish 16.99% 5.40%
mrm8488/wav2vec2-large-xlsr-53-spanish 19.20% 5.96%