|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: POCTS |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 26.1391 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# POCTS |
|
|
|
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0970 |
|
- Rouge1: 26.1391 |
|
- Rouge2: 7.3101 |
|
- Rougel: 19.1217 |
|
- Rougelsum: 21.9706 |
|
- Gen Len: 46.2245 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.15 |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 3.3259 | 1.0 | 33875 | 3.2535 | 17.942 | 4.5143 | 14.2766 | 15.582 | 19.3901 | |
|
| 2.9764 | 2.0 | 67750 | 3.1278 | 18.6558 | 5.1844 | 15.0939 | 16.3367 | 19.9174 | |
|
| 2.5889 | 3.0 | 101625 | 3.0970 | 19.1763 | 5.4517 | 15.5342 | 16.7186 | 19.8855 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.10.2 |
|
- Pytorch 1.7.1+cu110 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.3 |
|
|